Impacts of behaviour and acclimation of metabolic rate on energetics in sheltered ectotherms: a climate change perspective
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38378146
PubMed Central
PMC10878825
DOI
10.1098/rspb.2023.2152
Knihovny.cz E-zdroje
- Klíčová slova
- energy budget, hydroregulation, mechanistic niche modelling, retreat site choice, thermoregulation,
- MeSH
- aklimatizace * MeSH
- chování zvířat fyziologie MeSH
- klimatické změny * MeSH
- lidé MeSH
- půda MeSH
- teplota MeSH
- termoregulace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda MeSH
Many ectothermic organisms counter harsh abiotic conditions by seeking refuge in underground retreats. Variations in soil hydrothermal properties within these retreats may impact their energy budget, survival and population dynamics. This makes retreat site choice a critical yet understudied component of their strategies for coping with climate change. We used a mechanistic modelling approach to explore the implications of behavioural adjustments and seasonal acclimation of metabolic rate on retreat depth and the energy budget of ectotherms, considering both current and future climate conditions. We used a temperate amphibian, the alpine newt (Ichthyosaura alpestris), as a model species. Our simulations predict an interactive influence of different thermo- and hydroregulatory strategies on the vertical positioning of individuals in underground refuges. The adoption of a particular strategy largely determines the impact of climate change on retreat site choice. Additionally, we found that, given the behavioural thermoregulation/hydroregulation and metabolic acclimation patterns considered, behaviour within the retreat has a greater impact on ectotherm energetics than acclimation of metabolic rate under different climate change scenarios. We conclude that further empirical research aimed at determining ectotherm behavioural strategies during both surface activity and inactivity is needed to understand their population dynamics and species viability under climate change.
Zobrazit více v PubMed
Scanes E, Scanes PR, Ross PM. 2020. Climate change rapidly warms and acidifies Australian estuaries. Nat. Commun. 11, 1803. (10.1038/s41467-020-15550-z) PubMed DOI PMC
Xu Y, Ramanathan V, Victor DG. 2018. Global warming will happen faster than we think. Nature 564, 30-32. (10.1038/d41586-018-07586-5) PubMed DOI
Sinervo B, et al. 2010. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894-899. (10.1126/science.1184695) PubMed DOI
Gunderson AR, Leal M. 2016. A conceptual framework for understanding thermal constraints on ectotherm activity with implications for predicting responses to global change. Ecol. Lett. 19, 111-120. (10.1111/ele.12552) PubMed DOI
Whitaker PB, Shine R. 2002. Thermal biology and activity patterns of the eastern brownsnake (Pseudonaja textilis): a radiotelemetric study. Herpetologica 58, 436-452. (10.1655/0018-0831(2002)058[0436:TBAAPO]2.0.CO;2) DOI
Moll D. 1979. Subterranean feeding by the Illinois mud turtle, Kinosternon flavescens spooneri. J. Herpetol. 13, 371. (10.2307/1563341) DOI
Staples JF. 2016. Metabolic flexibility: hibernation, torpor, and estivation. In Comprehensive physiology (ed. Prakash YS), pp. 737-771. Hoboken, NJ: Wiley. PubMed
Wilsterman K, Ballinger MA, Williams CM. 2021. A unifying, eco-physiological framework for animal dormancy. Funct. Ecol. 35, 11-31. (10.1111/1365-2435.13718) DOI
Vazquez C, Rowcliffe JM, Spoelstra K, Jansen PA. 2019. Comparing diel activity patterns of wildlife across latitudes and seasons: time transformations using day length. Methods Ecol. Evol. 10, 2057-2066. (10.1111/2041-210X.13290) DOI
Qian B, Gregorich EG, Gameda S, Hopkins DW, Wang XL. 2011. Observed soil temperature trends associated with climate change in Canada. J. Geophys. Res. 116, D02106. (10.1029/2010JD015012) DOI
Zellweger F, et al. 2020. Forest microclimate dynamics drive plant responses to warming. Science 368, 772-775. (10.1126/science.aba6880) PubMed DOI
Enriquez-Urzelai U, Tingley R, Kearney MR, Sacco M, Palacio AS, Tejedo M, Nicieza AG. 2020. The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients. J. Anim. Ecol. 89, 1722-1734. (10.1111/1365-2656.13222) PubMed DOI
Zellweger F, De Frenne P, Lenoir J, Rocchini D, Coomes D. 2019. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34, 327-341. (10.1016/j.tree.2018.12.012) PubMed DOI
Pincebourde S, Woods HA. 2020. There is plenty of room at the bottom: microclimates drive insect vulnerability to climate change. Curr. Opin. Insect Sci. 41, 63-70. (10.1016/j.cois.2020.07.001) PubMed DOI
Rozen-Rechels D, Badiane A, Agostini S, Meylan S, Le Galliard J. 2020. Water restriction induces behavioral fight but impairs thermoregulation in a dry-skinned ectotherm. Oikos 129, 572-584. (10.1111/oik.06910) DOI
Rozen-Rechels D, Dupoué A, Lourdais O, Chamaillé-Jammes S, Meylan S, Clobert J, Le Galliard J. 2019. When water interacts with temperature: ecological and evolutionary implications of thermo-hydroregulation in terrestrial ectotherms. Ecol. Evol. 9, 10 029-10 043. (10.1002/ece3.5440) PubMed DOI PMC
Rutschmann A, et al. 2021. Intense nocturnal warming alters growth strategies, colouration and parasite load in a diurnal lizard. J. Anim. Ecol. 90, 1864-1877. (10.1111/1365-2656.13502) PubMed DOI
Seebacher F, Alford RA. 2002. Shelter microhabitats determine body temperature and dehydration rates of a terrestrial amphibian (Bufo marinus). J. Herpetol. 36, 69-75. (10.1670/0022-1511(2002)036[0069:SMDBTA]2.0.CO;2) DOI
Seebacher F, Alford RA. 1999. Movement and microhabitat use of a terrestrial amphibian (Bufo marinus) on a tropical island: seasonal variation and environmental correlates. J. Herpetol. 33, 208-214. (10.2307/1565716) DOI
McMaster MK, Downs CT. 2006. Do seasonal and behavioral differences in the use of refuges by the leopard tortoise (Geochelone pardalis) favor passive thermoregulation? Herpetologica 62, 37-46. (10.1655/04-16.1) DOI
Oromí N, Sanuy D, Sinsch U. 2010. Thermal ecology of natterjack toads (Bufo calamita) in a semiarid landscape. J. Therm. Biol. 35, 34-40. (10.1016/j.jtherbio.2009.10.005) DOI
Schwarzkopf L, Alford RA. 1996. Desiccation and shelter-site use in a tropical amphibian: comparing toads with physical models. Funct. Ecol. 10, 193-200. (10.2307/2389843) DOI
Forget-Klein É, Green DM. 2021. Toads use the subsurface thermal gradient for temperature regulation underground. J. Therm. Biol. 99, 102956. (10.1016/j.jtherbio.2021.102956) PubMed DOI
Székely D, Cogălniceanu D, Székely P, Denoël M. 2018. Dryness affects burrowing depth in a semi-fossorial amphibian. J. Arid Environ. 155, 79-81. (10.1016/j.jaridenv.2018.02.003) DOI
Huey RB. 1991. Physiological consequences of habitat selection. Am. Nat. 137, S91-S115. (10.1086/285141) DOI
Huey RB, Ma L, Levy O, Kearney MR. 2021. Three questions about the eco-physiology of overwintering underground. Ecol. Lett. 24, 170-185. (10.1111/ele.13636) PubMed DOI
Beukema W, et al. 2021. Microclimate limits thermal behaviour favourable to disease control in a nocturnal amphibian. Ecol. Lett. 24, 27-37. (10.1111/ele.13616) PubMed DOI
Sokolova IM. 2013. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597-608. (10.1093/icb/ict028) PubMed DOI
Sinclair BJ. 2015. Linking energetics and overwintering in temperate insects. J. Therm. Biol. 54, 5-11. (10.1016/j.jtherbio.2014.07.007) PubMed DOI
Versteegh MA, Helm B, Gwinner E, Tieleman BI. 2012. Annual cycles of metabolic rate are genetically determined but can be shifted by phenotypic flexibility. J. Exp. Biol. 215, 3459-3466. (10.1242/jeb.073445) PubMed DOI
Norin T, Metcalfe NB. 2019. Ecological and evolutionary consequences of metabolic rate plasticity in response to environmental change. Phil. Trans. R. Soc. B 374, 20180180. (10.1098/rstb.2018.0180) PubMed DOI PMC
Holden KG, Gangloff EJ, Gomez-Mancillas E, Hagerty K, Bronikowski AM. 2021. Surviving winter: physiological regulation of energy balance in a temperate ectotherm entering and exiting brumation. Gen. Comp. Endocrinol. 307, 113758. (10.1016/j.ygcen.2021.113758) PubMed DOI
Winterová B, Gvoždík L. 2021. Individual variation in seasonal acclimation by sympatric amphibians: a climate change perspective. Funct. Ecol. 35, 117-126. (10.1111/1365-2435.13705) DOI
Podhajský L, Gvoždík L. 2016. Variation in winter metabolic reduction between sympatric amphibians. Comp. Biochem. Physiol. A 201, 110-114. (10.1016/j.cbpa.2016.07.003) PubMed DOI
Glanville EJ, Seebacher F. 2006. Compensation for environmental change by complementary shifts of thermal sensitivity and thermoregulatory behaviour in an ectotherm. J. Exp. Biol. 209, 4869-4877. (10.1242/jeb.02585) PubMed DOI
Angilletta M Jr, Bennett AF, Guderley H, Navas CA, Seebacher F, Wilson RS. 2006. Coadaptation: a unifying principle in evolutionary thermal biology. Physiol. Biochem. Zool. 79, 282-294. (10.1086/499990) PubMed DOI
Paul RJ, Lamkemeyer T, Maurer J, Pinkhaus O, Pirow R, Seidl M, Zeis B. 2004. Thermal acclimation in the microcrustacean Daphnia: a survey of behavioural, physiological and biochemical mechanisms. J. Therm. Biol. 29, 655-662. (10.1016/j.jtherbio.2004.08.035) DOI
Lowe K, FitzGibbon S, Seebacher F, Wilson RS. 2010. Physiological and behavioural responses to seasonal changes in environmental temperature in the Australian spiny crayfish Euastacus sulcatus. J. Comp. Physiol. B 180, 653-660. (10.1007/s00360-010-0445-2) PubMed DOI
Gunderson AR, Stillman JH. 2015. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282, 20150401. (10.1098/rspb.2015.0401) PubMed DOI PMC
Gunderson AR, Dillon ME, Stillman JH. 2017. Estimating the benefits of plasticity in ectotherm heat tolerance under natural thermal variability. Funct. Ecol. 31, 1529-1539. (10.1111/1365-2435.12874) DOI
Seebacher F, White CR, Franklin CE. 2015. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61-66. (10.1038/nclimate2457) DOI
Gvoždík L. 2018. Just what is the thermal niche? Oikos 127, 1701-1710. (10.1111/oik.05563) DOI
Gvoždík L, Kristín P. 2017. Economic thermoregulatory response explains mismatch between thermal physiology and behavior in newts. J. Exp. Biol. 220, 1106-1111. (10.1242/jeb.145573) PubMed DOI
Hasumi M, Hongorzul T, Terbish K. 2009. Burrow use by Salamandrella keyserlingii (Caudata: Hynobiidae). Copeia 2009, 46-49. (10.1643/CP-07-237) DOI
Roznik EA, Johnson SA. 2009. Burrow use and survival of newly metamorphosed Gopher frogs (Rana capito). J. Herpetol. 43, 431-437. (10.1670/08-159R.1) DOI
Kristín P, Gvoždík L. 2014. Individual variation in amphibian metabolic rates during overwintering: implications for a warming world. J. Zool. 294, 99-103. (10.1111/jzo.12157) DOI
Breckenridge WJ, Tester JR. 1961. Growth, local movements and hibernation of the Manitoba toad, Bufo hemiophrys. Ecology 42, 637-646. (10.2307/1933495) DOI
Roček Z, Joly P, Grossenbacher K, Thiesmeier B. 2003. Triturus alpestris (Laurenti, 1768). In Handbuch der reptilien und amphibien europas, schwanzlurche (urodela) IIA, salamandridae II (eds Grossenbacher K, Thiesmeir B), pp. 607-656. Wiebelsheim, Germany: Aula Verlag.
Hadamová M, Gvoždík L. 2011. Seasonal acclimation of preferred body temperatures improves the opportunity for thermoregulation in newts. Physiol. Biochem. Zool. 84, 166-174. (10.1086/658202) PubMed DOI
Kearney MR, Porter WP. 2017. NicheMapR: an R package for biophysical modelling: the microclimate model. Ecography 40, 664-674. (10.1111/ecog.02360) DOI
Kearney MR, Porter WP. 2020. NicheMapR: an R package for biophysical modelling: the ectotherm and dynamic energy budget models. Ecography 43, 85-96. (10.1111/ecog.04680) DOI
Porter WP, Mitchell JW, Beckman WA, DeWitt CB. 1973. Behavioral implications of mechanistic ecology: thermal and behavioral modeling of desert ectotherms and their microenvironment. Oecologia 13, 1-54. (10.1007/BF00379617) PubMed DOI
Kearney MR, Gillingham PK, Bramer I, Duffy JP, Maclean IMD. 2020. A method for computing hourly, historical, terrain-corrected microclimate anywhere on earth. Methods Ecol. Evol. 11, 38-43. (10.1111/2041-210X.13330) DOI
Maclean IMD, Mosedale JR, Bennie JJ. 2019. Microclima: an R package for modelling meso- and microclimate. Methods Ecol. Evol. 10, 280-290. (10.1111/2041-210X.13093) DOI
Kearney M, Porter W. 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecol. Lett. 12, 334-350. (10.1111/j.1461-0248.2008.01277.x) PubMed DOI
Kearney M, Phillips BL, Tracy CR, Christian KA, Betts G, Porter WP. 2008. Modelling species distributions without using species distributions: the cane toad in Australia under current and future climates. Ecography 31, 423-434. (10.1111/j.0906-7590.2008.05457.x) DOI
Balogová M, Gvoždík L. 2015. Can newts cope with the heat? Disparate thermoregulatory strategies of two sympatric species in water. PLoS ONE 10, e0128155. (10.1371/journal.pone.0128155) PubMed DOI PMC
Piasečná K, Pončová A, Tejedo M, Gvoždík L. 2015. Thermoregulatory strategies in an aquatic ectotherm from thermally-constrained habitats: an evaluation of current approaches. J. Therm. Biol. 52, 97-107. (10.1016/j.jtherbio.2015.06.007) PubMed DOI
Tracy CR. 1976. A Model of the dynamic exchanges of water and energy between a terrestrial amphibian and its environment. Ecol. Monogr. 46, 293-326. (10.2307/1942256) DOI
Sinclair BJ. 2001. Field ecology of freeze tolerance: interannual variation in cooling rates, freeze-thaw and thermal stress in the microhabitat of the alpine cockroach Celatoblatta quinquemaculata. Oikos 93, 286-293. (10.1034/j.1600-0706.2001.930211.x) DOI
Wu NC, Alton LA, Clemente CJ, Kearney MR, White CR. 2015. Morphology and burrowing energetics of semi-fossorial skinks (Liopholis spp.). J. Exp. Biol. 218, 2416-2426. (10.1242/jeb.113803) PubMed DOI
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965-1978. (10.1002/joc.1276) DOI
Roos MMH, Wu G-M, Miller PJO. 2016. The significance of respiration timing in the energetics estimates of free-ranging killer whales (Orcinus orca). J. Exp. Biol. 219, 2066-2077. (10.1242/jeb.137513) PubMed DOI
Chukwuka CO, Monks JM, Cree A. 2020. Heat and water loss vs shelter: a dilemma in thermoregulatory decision-making for a retreat-dwelling nocturnal gecko. J. Exp. Biol. 223, jeb231241. (10.1242/jeb.231241) PubMed DOI
Cowles RB. 1941. Observations on the winter activities of desert reptiles. Ecology 22, 125-140. (10.2307/1932207) DOI
Greenberg DA, Palen WJ. 2021. Hydrothermal physiology and climate vulnerability in amphibians. Proc. R. Soc. B 288, 20202273. (10.1098/rspb.2020.2273) PubMed DOI PMC
Titon B Jr, Navas CA, Jim J, Gomes FR. 2010. Water balance and locomotor performance in three species of neotropical toads that differ in geographical distribution. Comp. Biochem. Physiol. A 156, 129-135. (10.1016/j.cbpa.2010.01.009) PubMed DOI
Barton MG, Clusella-Trullas S, Terblanche JS. 2019. Spatial scale, topography and thermoregulatory behaviour interact when modelling species’ thermal niches. Ecography 42, 376-389. (10.1111/ecog.03655) DOI
Lertzman-Lepofsky GF, Kissel AM, Sinervo B, Palen WJ. 2020. Water loss and temperature interact to compound amphibian vulnerability to climate change. Glob. Change Biol. 26, 4868-4879. (10.1111/gcb.15231) PubMed DOI
Riddell EA, Roback EY, Wells CE, Zamudio KR, Sears MW. 2019. Thermal cues drive plasticity of desiccation resistance in montane salamanders with implications for climate change. Nat. Commun. 10, 4091. (10.1038/s41467-019-11990-4) PubMed DOI PMC
Riddell EA, Mutanen M, Ghalambor CK. 2023. Hydric effects on thermal tolerances influence climate vulnerability in a high-latitude beetle. Glob. Change Biol. 29, 5184-5198. (10.1111/gcb.16830) PubMed DOI
Pirtle EI, Tracy CR, Kearney MR. 2019. Hydroregulation. A neglected behavioral response of lizards to climate change? In Behavior of lizards: evolutionary and mechanistic perspectives (ed. Bels VL). Boca Raton, FL: CRC Press.
Stark G, Ma L, Zeng Z, Du W, Levy O. 2023. Cool shade and not so cool shade: how habitat loss may accelerate thermal stress under current and future climate. Glob. Change Biol. 29, 6201-6216. (10.1111/gcb.16802) PubMed DOI
Kearney MR. 2013. Activity restriction and the mechanistic basis for extinctions under climate warming. Ecol. Lett. 16, 1470-1479. (10.1111/ele.12192) PubMed DOI
Woods HA, Dillon ME, Pincebourde S. 2015. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol. 54, 86-97. (10.1016/j.jtherbio.2014.10.002) PubMed DOI
Chou C-C, Perez DM, Johns S, Gardner R, Kerr KA, Head ML, McCullough EL, Backwell PRY. 2019. Staying cool: the importance of shade availability for tropical ectotherms. Behav. Ecol. Sociobiol. 73, 1-12. (10.1007/s00265-019-2721-9) DOI
Harris RMB, et al. 2018. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579-587. (10.1038/s41558-018-0187-9) DOI
Wang J, Chen Y, Tett SFB, Yan Z, Zhai P, Feng J, Xia J. 2020. Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun. 11, 528. (10.1038/s41467-019-14233-8) PubMed DOI PMC
Sandblom E, Gräns A, Axelsson M, Seth H. 2014. Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future. Proc. R. Soc. B 281, 20141490. (10.1098/rspb.2014.1490) PubMed DOI PMC
Terblanche JS, Chown SL. 2006. The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae). J. Exp. Biol. 209, 1064-1073. (10.1242/jeb.02129) PubMed DOI PMC
Norin T, Malte H, Clark TD. 2016. Differential plasticity of metabolic rate phenotypes in a tropical fish facing environmental change. Funct. Ecol. 30, 369-378. (10.1111/1365-2435.12503) DOI
Wikelski M, Cooke SJ. 2006. Conservation physiology. Trends Ecol. Evol. 21, 38-46. (10.1016/j.tree.2005.10.018) PubMed DOI
Cooke SJ, Hinch SG, Wikelski M, Andrews RD, Kuchel LJ, Wolcott TG, Butler PJ. 2004. Biotelemetry: a mechanistic approach to ecology. Trends Ecol. Evol. 19, 334-343. (10.1016/j.tree.2004.04.003) PubMed DOI
Kearney MR, Munns SL, Moore D, Malishev M, Bull CM. 2018. Field tests of a general ectotherm niche model show how water can limit lizard activity and distribution. Ecol. Monogr. 88, 672-693. (10.1002/ecm.1326) DOI
Enriquez-Urzelai U, Gvoždík L. 2024. Impacts of behaviour and acclimation of metabolic rate on energetics in sheltered ectotherms: a climate change perspective. Zenodo. (10.5281/zenodo.10589850) PubMed DOI
Enriquez-Urzelai U, Gvoždík L. 2024. Impacts of behaviour and acclimation of metabolic rate on energetics in sheltered ectotherms: a climate change perspective. Figshare. (10.6084/m9.figshare.c.7073654) PubMed DOI