Impacts of behaviour and acclimation of metabolic rate on energetics in sheltered ectotherms: a climate change perspective

. 2024 Feb 28 ; 291 (2017) : 20232152. [epub] 20240221

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38378146

Many ectothermic organisms counter harsh abiotic conditions by seeking refuge in underground retreats. Variations in soil hydrothermal properties within these retreats may impact their energy budget, survival and population dynamics. This makes retreat site choice a critical yet understudied component of their strategies for coping with climate change. We used a mechanistic modelling approach to explore the implications of behavioural adjustments and seasonal acclimation of metabolic rate on retreat depth and the energy budget of ectotherms, considering both current and future climate conditions. We used a temperate amphibian, the alpine newt (Ichthyosaura alpestris), as a model species. Our simulations predict an interactive influence of different thermo- and hydroregulatory strategies on the vertical positioning of individuals in underground refuges. The adoption of a particular strategy largely determines the impact of climate change on retreat site choice. Additionally, we found that, given the behavioural thermoregulation/hydroregulation and metabolic acclimation patterns considered, behaviour within the retreat has a greater impact on ectotherm energetics than acclimation of metabolic rate under different climate change scenarios. We conclude that further empirical research aimed at determining ectotherm behavioural strategies during both surface activity and inactivity is needed to understand their population dynamics and species viability under climate change.

Zobrazit více v PubMed

PubMed DOI PMC

PubMed DOI

PubMed DOI

PubMed DOI

Whitaker PB, Shine R. 2002. Thermal biology and activity patterns of the eastern brownsnake (Pseudonaja textilis): a radiotelemetric study. Herpetologica 58, 436-452. (10.1655/0018-0831(2002)058[0436:TBAAPO]2.0.CO;2) DOI

Moll D. 1979. Subterranean feeding by the Illinois mud turtle, Kinosternon flavescens spooneri. J. Herpetol. 13, 371. (10.2307/1563341) DOI

PubMed

Wilsterman K, Ballinger MA, Williams CM. 2021. A unifying, eco-physiological framework for animal dormancy. Funct. Ecol. 35, 11-31. (10.1111/1365-2435.13718) DOI

Vazquez C, Rowcliffe JM, Spoelstra K, Jansen PA. 2019. Comparing diel activity patterns of wildlife across latitudes and seasons: time transformations using day length. Methods Ecol. Evol. 10, 2057-2066. (10.1111/2041-210X.13290) DOI

Qian B, Gregorich EG, Gameda S, Hopkins DW, Wang XL. 2011. Observed soil temperature trends associated with climate change in Canada. J. Geophys. Res. 116, D02106. (10.1029/2010JD015012) DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

Rozen-Rechels D, Badiane A, Agostini S, Meylan S, Le Galliard J. 2020. Water restriction induces behavioral fight but impairs thermoregulation in a dry-skinned ectotherm. Oikos 129, 572-584. (10.1111/oik.06910) DOI

PubMed DOI PMC

PubMed DOI

Seebacher F, Alford RA. 2002. Shelter microhabitats determine body temperature and dehydration rates of a terrestrial amphibian (Bufo marinus). J. Herpetol. 36, 69-75. (10.1670/0022-1511(2002)036[0069:SMDBTA]2.0.CO;2) DOI

Seebacher F, Alford RA. 1999. Movement and microhabitat use of a terrestrial amphibian (Bufo marinus) on a tropical island: seasonal variation and environmental correlates. J. Herpetol. 33, 208-214. (10.2307/1565716) DOI

McMaster MK, Downs CT. 2006. Do seasonal and behavioral differences in the use of refuges by the leopard tortoise (Geochelone pardalis) favor passive thermoregulation? Herpetologica 62, 37-46. (10.1655/04-16.1) DOI

Oromí N, Sanuy D, Sinsch U. 2010. Thermal ecology of natterjack toads (Bufo calamita) in a semiarid landscape. J. Therm. Biol. 35, 34-40. (10.1016/j.jtherbio.2009.10.005) DOI

Schwarzkopf L, Alford RA. 1996. Desiccation and shelter-site use in a tropical amphibian: comparing toads with physical models. Funct. Ecol. 10, 193-200. (10.2307/2389843) DOI

PubMed DOI

Székely D, Cogălniceanu D, Székely P, Denoël M. 2018. Dryness affects burrowing depth in a semi-fossorial amphibian. J. Arid Environ. 155, 79-81. (10.1016/j.jaridenv.2018.02.003) DOI

Huey RB. 1991. Physiological consequences of habitat selection. Am. Nat. 137, S91-S115. (10.1086/285141) DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI

Winterová B, Gvoždík L. 2021. Individual variation in seasonal acclimation by sympatric amphibians: a climate change perspective. Funct. Ecol. 35, 117-126. (10.1111/1365-2435.13705) DOI

PubMed DOI

PubMed DOI

PubMed DOI

Paul RJ, Lamkemeyer T, Maurer J, Pinkhaus O, Pirow R, Seidl M, Zeis B. 2004. Thermal acclimation in the microcrustacean Daphnia: a survey of behavioural, physiological and biochemical mechanisms. J. Therm. Biol. 29, 655-662. (10.1016/j.jtherbio.2004.08.035) DOI

PubMed DOI

PubMed DOI PMC

Gunderson AR, Dillon ME, Stillman JH. 2017. Estimating the benefits of plasticity in ectotherm heat tolerance under natural thermal variability. Funct. Ecol. 31, 1529-1539. (10.1111/1365-2435.12874) DOI

Seebacher F, White CR, Franklin CE. 2015. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61-66. (10.1038/nclimate2457) DOI

Gvoždík L. 2018. Just what is the thermal niche? Oikos 127, 1701-1710. (10.1111/oik.05563) DOI

PubMed DOI

Hasumi M, Hongorzul T, Terbish K. 2009. Burrow use by Salamandrella keyserlingii (Caudata: Hynobiidae). Copeia 2009, 46-49. (10.1643/CP-07-237) DOI

Roznik EA, Johnson SA. 2009. Burrow use and survival of newly metamorphosed Gopher frogs (Rana capito). J. Herpetol. 43, 431-437. (10.1670/08-159R.1) DOI

Kristín P, Gvoždík L. 2014. Individual variation in amphibian metabolic rates during overwintering: implications for a warming world. J. Zool. 294, 99-103. (10.1111/jzo.12157) DOI

Breckenridge WJ, Tester JR. 1961. Growth, local movements and hibernation of the Manitoba toad, Bufo hemiophrys. Ecology 42, 637-646. (10.2307/1933495) DOI

Roček Z, Joly P, Grossenbacher K, Thiesmeier B. 2003. Triturus alpestris (Laurenti, 1768). In Handbuch der reptilien und amphibien europas, schwanzlurche (urodela) IIA, salamandridae II (eds Grossenbacher K, Thiesmeir B), pp. 607-656. Wiebelsheim, Germany: Aula Verlag.

PubMed DOI

Kearney MR, Porter WP. 2017. NicheMapR: an R package for biophysical modelling: the microclimate model. Ecography 40, 664-674. (10.1111/ecog.02360) DOI

Kearney MR, Porter WP. 2020. NicheMapR: an R package for biophysical modelling: the ectotherm and dynamic energy budget models. Ecography 43, 85-96. (10.1111/ecog.04680) DOI

PubMed DOI

Kearney MR, Gillingham PK, Bramer I, Duffy JP, Maclean IMD. 2020. A method for computing hourly, historical, terrain-corrected microclimate anywhere on earth. Methods Ecol. Evol. 11, 38-43. (10.1111/2041-210X.13330) DOI

Maclean IMD, Mosedale JR, Bennie JJ. 2019. Microclima: an R package for modelling meso- and microclimate. Methods Ecol. Evol. 10, 280-290. (10.1111/2041-210X.13093) DOI

PubMed DOI

Kearney M, Phillips BL, Tracy CR, Christian KA, Betts G, Porter WP. 2008. Modelling species distributions without using species distributions: the cane toad in Australia under current and future climates. Ecography 31, 423-434. (10.1111/j.0906-7590.2008.05457.x) DOI

PubMed DOI PMC

PubMed DOI

Tracy CR. 1976. A Model of the dynamic exchanges of water and energy between a terrestrial amphibian and its environment. Ecol. Monogr. 46, 293-326. (10.2307/1942256) DOI

Sinclair BJ. 2001. Field ecology of freeze tolerance: interannual variation in cooling rates, freeze-thaw and thermal stress in the microhabitat of the alpine cockroach Celatoblatta quinquemaculata. Oikos 93, 286-293. (10.1034/j.1600-0706.2001.930211.x) DOI

PubMed DOI

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965-1978. (10.1002/joc.1276) DOI

PubMed DOI

PubMed DOI

Cowles RB. 1941. Observations on the winter activities of desert reptiles. Ecology 22, 125-140. (10.2307/1932207) DOI

PubMed DOI PMC

PubMed DOI

Barton MG, Clusella-Trullas S, Terblanche JS. 2019. Spatial scale, topography and thermoregulatory behaviour interact when modelling species’ thermal niches. Ecography 42, 376-389. (10.1111/ecog.03655) DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI

Pirtle EI, Tracy CR, Kearney MR. 2019. Hydroregulation. A neglected behavioral response of lizards to climate change? In Behavior of lizards: evolutionary and mechanistic perspectives (ed. Bels VL). Boca Raton, FL: CRC Press.

PubMed DOI

PubMed DOI

PubMed DOI

Chou C-C, Perez DM, Johns S, Gardner R, Kerr KA, Head ML, McCullough EL, Backwell PRY. 2019. Staying cool: the importance of shade availability for tropical ectotherms. Behav. Ecol. Sociobiol. 73, 1-12. (10.1007/s00265-019-2721-9) DOI

Harris RMB, et al. 2018. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579-587. (10.1038/s41558-018-0187-9) DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

Norin T, Malte H, Clark TD. 2016. Differential plasticity of metabolic rate phenotypes in a tropical fish facing environmental change. Funct. Ecol. 30, 369-378. (10.1111/1365-2435.12503) DOI

PubMed DOI

PubMed DOI

Kearney MR, Munns SL, Moore D, Malishev M, Bull CM. 2018. Field tests of a general ectotherm niche model show how water can limit lizard activity and distribution. Ecol. Monogr. 88, 672-693. (10.1002/ecm.1326) DOI

PubMed DOI

PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...