Impacts of behaviour and acclimation of metabolic rate on energetics in sheltered ectotherms: a climate change perspective

. 2024 Feb 28 ; 291 (2017) : 20232152. [epub] 20240221

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38378146

Many ectothermic organisms counter harsh abiotic conditions by seeking refuge in underground retreats. Variations in soil hydrothermal properties within these retreats may impact their energy budget, survival and population dynamics. This makes retreat site choice a critical yet understudied component of their strategies for coping with climate change. We used a mechanistic modelling approach to explore the implications of behavioural adjustments and seasonal acclimation of metabolic rate on retreat depth and the energy budget of ectotherms, considering both current and future climate conditions. We used a temperate amphibian, the alpine newt (Ichthyosaura alpestris), as a model species. Our simulations predict an interactive influence of different thermo- and hydroregulatory strategies on the vertical positioning of individuals in underground refuges. The adoption of a particular strategy largely determines the impact of climate change on retreat site choice. Additionally, we found that, given the behavioural thermoregulation/hydroregulation and metabolic acclimation patterns considered, behaviour within the retreat has a greater impact on ectotherm energetics than acclimation of metabolic rate under different climate change scenarios. We conclude that further empirical research aimed at determining ectotherm behavioural strategies during both surface activity and inactivity is needed to understand their population dynamics and species viability under climate change.

Zobrazit více v PubMed

Scanes E, Scanes PR, Ross PM. 2020. Climate change rapidly warms and acidifies Australian estuaries. Nat. Commun. 11, 1803. (10.1038/s41467-020-15550-z) PubMed DOI PMC

Xu Y, Ramanathan V, Victor DG. 2018. Global warming will happen faster than we think. Nature 564, 30-32. (10.1038/d41586-018-07586-5) PubMed DOI

Sinervo B, et al. 2010. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894-899. (10.1126/science.1184695) PubMed DOI

Gunderson AR, Leal M. 2016. A conceptual framework for understanding thermal constraints on ectotherm activity with implications for predicting responses to global change. Ecol. Lett. 19, 111-120. (10.1111/ele.12552) PubMed DOI

Whitaker PB, Shine R. 2002. Thermal biology and activity patterns of the eastern brownsnake (Pseudonaja textilis): a radiotelemetric study. Herpetologica 58, 436-452. (10.1655/0018-0831(2002)058[0436:TBAAPO]2.0.CO;2) DOI

Moll D. 1979. Subterranean feeding by the Illinois mud turtle, Kinosternon flavescens spooneri. J. Herpetol. 13, 371. (10.2307/1563341) DOI

Staples JF. 2016. Metabolic flexibility: hibernation, torpor, and estivation. In Comprehensive physiology (ed. Prakash YS), pp. 737-771. Hoboken, NJ: Wiley. PubMed

Wilsterman K, Ballinger MA, Williams CM. 2021. A unifying, eco-physiological framework for animal dormancy. Funct. Ecol. 35, 11-31. (10.1111/1365-2435.13718) DOI

Vazquez C, Rowcliffe JM, Spoelstra K, Jansen PA. 2019. Comparing diel activity patterns of wildlife across latitudes and seasons: time transformations using day length. Methods Ecol. Evol. 10, 2057-2066. (10.1111/2041-210X.13290) DOI

Qian B, Gregorich EG, Gameda S, Hopkins DW, Wang XL. 2011. Observed soil temperature trends associated with climate change in Canada. J. Geophys. Res. 116, D02106. (10.1029/2010JD015012) DOI

Zellweger F, et al. 2020. Forest microclimate dynamics drive plant responses to warming. Science 368, 772-775. (10.1126/science.aba6880) PubMed DOI

Enriquez-Urzelai U, Tingley R, Kearney MR, Sacco M, Palacio AS, Tejedo M, Nicieza AG. 2020. The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients. J. Anim. Ecol. 89, 1722-1734. (10.1111/1365-2656.13222) PubMed DOI

Zellweger F, De Frenne P, Lenoir J, Rocchini D, Coomes D. 2019. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34, 327-341. (10.1016/j.tree.2018.12.012) PubMed DOI

Pincebourde S, Woods HA. 2020. There is plenty of room at the bottom: microclimates drive insect vulnerability to climate change. Curr. Opin. Insect Sci. 41, 63-70. (10.1016/j.cois.2020.07.001) PubMed DOI

Rozen-Rechels D, Badiane A, Agostini S, Meylan S, Le Galliard J. 2020. Water restriction induces behavioral fight but impairs thermoregulation in a dry-skinned ectotherm. Oikos 129, 572-584. (10.1111/oik.06910) DOI

Rozen-Rechels D, Dupoué A, Lourdais O, Chamaillé-Jammes S, Meylan S, Clobert J, Le Galliard J. 2019. When water interacts with temperature: ecological and evolutionary implications of thermo-hydroregulation in terrestrial ectotherms. Ecol. Evol. 9, 10 029-10 043. (10.1002/ece3.5440) PubMed DOI PMC

Rutschmann A, et al. 2021. Intense nocturnal warming alters growth strategies, colouration and parasite load in a diurnal lizard. J. Anim. Ecol. 90, 1864-1877. (10.1111/1365-2656.13502) PubMed DOI

Seebacher F, Alford RA. 2002. Shelter microhabitats determine body temperature and dehydration rates of a terrestrial amphibian (Bufo marinus). J. Herpetol. 36, 69-75. (10.1670/0022-1511(2002)036[0069:SMDBTA]2.0.CO;2) DOI

Seebacher F, Alford RA. 1999. Movement and microhabitat use of a terrestrial amphibian (Bufo marinus) on a tropical island: seasonal variation and environmental correlates. J. Herpetol. 33, 208-214. (10.2307/1565716) DOI

McMaster MK, Downs CT. 2006. Do seasonal and behavioral differences in the use of refuges by the leopard tortoise (Geochelone pardalis) favor passive thermoregulation? Herpetologica 62, 37-46. (10.1655/04-16.1) DOI

Oromí N, Sanuy D, Sinsch U. 2010. Thermal ecology of natterjack toads (Bufo calamita) in a semiarid landscape. J. Therm. Biol. 35, 34-40. (10.1016/j.jtherbio.2009.10.005) DOI

Schwarzkopf L, Alford RA. 1996. Desiccation and shelter-site use in a tropical amphibian: comparing toads with physical models. Funct. Ecol. 10, 193-200. (10.2307/2389843) DOI

Forget-Klein É, Green DM. 2021. Toads use the subsurface thermal gradient for temperature regulation underground. J. Therm. Biol. 99, 102956. (10.1016/j.jtherbio.2021.102956) PubMed DOI

Székely D, Cogălniceanu D, Székely P, Denoël M. 2018. Dryness affects burrowing depth in a semi-fossorial amphibian. J. Arid Environ. 155, 79-81. (10.1016/j.jaridenv.2018.02.003) DOI

Huey RB. 1991. Physiological consequences of habitat selection. Am. Nat. 137, S91-S115. (10.1086/285141) DOI

Huey RB, Ma L, Levy O, Kearney MR. 2021. Three questions about the eco-physiology of overwintering underground. Ecol. Lett. 24, 170-185. (10.1111/ele.13636) PubMed DOI

Beukema W, et al. 2021. Microclimate limits thermal behaviour favourable to disease control in a nocturnal amphibian. Ecol. Lett. 24, 27-37. (10.1111/ele.13616) PubMed DOI

Sokolova IM. 2013. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597-608. (10.1093/icb/ict028) PubMed DOI

Sinclair BJ. 2015. Linking energetics and overwintering in temperate insects. J. Therm. Biol. 54, 5-11. (10.1016/j.jtherbio.2014.07.007) PubMed DOI

Versteegh MA, Helm B, Gwinner E, Tieleman BI. 2012. Annual cycles of metabolic rate are genetically determined but can be shifted by phenotypic flexibility. J. Exp. Biol. 215, 3459-3466. (10.1242/jeb.073445) PubMed DOI

Norin T, Metcalfe NB. 2019. Ecological and evolutionary consequences of metabolic rate plasticity in response to environmental change. Phil. Trans. R. Soc. B 374, 20180180. (10.1098/rstb.2018.0180) PubMed DOI PMC

Holden KG, Gangloff EJ, Gomez-Mancillas E, Hagerty K, Bronikowski AM. 2021. Surviving winter: physiological regulation of energy balance in a temperate ectotherm entering and exiting brumation. Gen. Comp. Endocrinol. 307, 113758. (10.1016/j.ygcen.2021.113758) PubMed DOI

Winterová B, Gvoždík L. 2021. Individual variation in seasonal acclimation by sympatric amphibians: a climate change perspective. Funct. Ecol. 35, 117-126. (10.1111/1365-2435.13705) DOI

Podhajský L, Gvoždík L. 2016. Variation in winter metabolic reduction between sympatric amphibians. Comp. Biochem. Physiol. A 201, 110-114. (10.1016/j.cbpa.2016.07.003) PubMed DOI

Glanville EJ, Seebacher F. 2006. Compensation for environmental change by complementary shifts of thermal sensitivity and thermoregulatory behaviour in an ectotherm. J. Exp. Biol. 209, 4869-4877. (10.1242/jeb.02585) PubMed DOI

Angilletta M Jr, Bennett AF, Guderley H, Navas CA, Seebacher F, Wilson RS. 2006. Coadaptation: a unifying principle in evolutionary thermal biology. Physiol. Biochem. Zool. 79, 282-294. (10.1086/499990) PubMed DOI

Paul RJ, Lamkemeyer T, Maurer J, Pinkhaus O, Pirow R, Seidl M, Zeis B. 2004. Thermal acclimation in the microcrustacean Daphnia: a survey of behavioural, physiological and biochemical mechanisms. J. Therm. Biol. 29, 655-662. (10.1016/j.jtherbio.2004.08.035) DOI

Lowe K, FitzGibbon S, Seebacher F, Wilson RS. 2010. Physiological and behavioural responses to seasonal changes in environmental temperature in the Australian spiny crayfish Euastacus sulcatus. J. Comp. Physiol. B 180, 653-660. (10.1007/s00360-010-0445-2) PubMed DOI

Gunderson AR, Stillman JH. 2015. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282, 20150401. (10.1098/rspb.2015.0401) PubMed DOI PMC

Gunderson AR, Dillon ME, Stillman JH. 2017. Estimating the benefits of plasticity in ectotherm heat tolerance under natural thermal variability. Funct. Ecol. 31, 1529-1539. (10.1111/1365-2435.12874) DOI

Seebacher F, White CR, Franklin CE. 2015. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61-66. (10.1038/nclimate2457) DOI

Gvoždík L. 2018. Just what is the thermal niche? Oikos 127, 1701-1710. (10.1111/oik.05563) DOI

Gvoždík L, Kristín P. 2017. Economic thermoregulatory response explains mismatch between thermal physiology and behavior in newts. J. Exp. Biol. 220, 1106-1111. (10.1242/jeb.145573) PubMed DOI

Hasumi M, Hongorzul T, Terbish K. 2009. Burrow use by Salamandrella keyserlingii (Caudata: Hynobiidae). Copeia 2009, 46-49. (10.1643/CP-07-237) DOI

Roznik EA, Johnson SA. 2009. Burrow use and survival of newly metamorphosed Gopher frogs (Rana capito). J. Herpetol. 43, 431-437. (10.1670/08-159R.1) DOI

Kristín P, Gvoždík L. 2014. Individual variation in amphibian metabolic rates during overwintering: implications for a warming world. J. Zool. 294, 99-103. (10.1111/jzo.12157) DOI

Breckenridge WJ, Tester JR. 1961. Growth, local movements and hibernation of the Manitoba toad, Bufo hemiophrys. Ecology 42, 637-646. (10.2307/1933495) DOI

Roček Z, Joly P, Grossenbacher K, Thiesmeier B. 2003. Triturus alpestris (Laurenti, 1768). In Handbuch der reptilien und amphibien europas, schwanzlurche (urodela) IIA, salamandridae II (eds Grossenbacher K, Thiesmeir B), pp. 607-656. Wiebelsheim, Germany: Aula Verlag.

Hadamová M, Gvoždík L. 2011. Seasonal acclimation of preferred body temperatures improves the opportunity for thermoregulation in newts. Physiol. Biochem. Zool. 84, 166-174. (10.1086/658202) PubMed DOI

Kearney MR, Porter WP. 2017. NicheMapR: an R package for biophysical modelling: the microclimate model. Ecography 40, 664-674. (10.1111/ecog.02360) DOI

Kearney MR, Porter WP. 2020. NicheMapR: an R package for biophysical modelling: the ectotherm and dynamic energy budget models. Ecography 43, 85-96. (10.1111/ecog.04680) DOI

Porter WP, Mitchell JW, Beckman WA, DeWitt CB. 1973. Behavioral implications of mechanistic ecology: thermal and behavioral modeling of desert ectotherms and their microenvironment. Oecologia 13, 1-54. (10.1007/BF00379617) PubMed DOI

Kearney MR, Gillingham PK, Bramer I, Duffy JP, Maclean IMD. 2020. A method for computing hourly, historical, terrain-corrected microclimate anywhere on earth. Methods Ecol. Evol. 11, 38-43. (10.1111/2041-210X.13330) DOI

Maclean IMD, Mosedale JR, Bennie JJ. 2019. Microclima: an R package for modelling meso- and microclimate. Methods Ecol. Evol. 10, 280-290. (10.1111/2041-210X.13093) DOI

Kearney M, Porter W. 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecol. Lett. 12, 334-350. (10.1111/j.1461-0248.2008.01277.x) PubMed DOI

Kearney M, Phillips BL, Tracy CR, Christian KA, Betts G, Porter WP. 2008. Modelling species distributions without using species distributions: the cane toad in Australia under current and future climates. Ecography 31, 423-434. (10.1111/j.0906-7590.2008.05457.x) DOI

Balogová M, Gvoždík L. 2015. Can newts cope with the heat? Disparate thermoregulatory strategies of two sympatric species in water. PLoS ONE 10, e0128155. (10.1371/journal.pone.0128155) PubMed DOI PMC

Piasečná K, Pončová A, Tejedo M, Gvoždík L. 2015. Thermoregulatory strategies in an aquatic ectotherm from thermally-constrained habitats: an evaluation of current approaches. J. Therm. Biol. 52, 97-107. (10.1016/j.jtherbio.2015.06.007) PubMed DOI

Tracy CR. 1976. A Model of the dynamic exchanges of water and energy between a terrestrial amphibian and its environment. Ecol. Monogr. 46, 293-326. (10.2307/1942256) DOI

Sinclair BJ. 2001. Field ecology of freeze tolerance: interannual variation in cooling rates, freeze-thaw and thermal stress in the microhabitat of the alpine cockroach Celatoblatta quinquemaculata. Oikos 93, 286-293. (10.1034/j.1600-0706.2001.930211.x) DOI

Wu NC, Alton LA, Clemente CJ, Kearney MR, White CR. 2015. Morphology and burrowing energetics of semi-fossorial skinks (Liopholis spp.). J. Exp. Biol. 218, 2416-2426. (10.1242/jeb.113803) PubMed DOI

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965-1978. (10.1002/joc.1276) DOI

Roos MMH, Wu G-M, Miller PJO. 2016. The significance of respiration timing in the energetics estimates of free-ranging killer whales (Orcinus orca). J. Exp. Biol. 219, 2066-2077. (10.1242/jeb.137513) PubMed DOI

Chukwuka CO, Monks JM, Cree A. 2020. Heat and water loss vs shelter: a dilemma in thermoregulatory decision-making for a retreat-dwelling nocturnal gecko. J. Exp. Biol. 223, jeb231241. (10.1242/jeb.231241) PubMed DOI

Cowles RB. 1941. Observations on the winter activities of desert reptiles. Ecology 22, 125-140. (10.2307/1932207) DOI

Greenberg DA, Palen WJ. 2021. Hydrothermal physiology and climate vulnerability in amphibians. Proc. R. Soc. B 288, 20202273. (10.1098/rspb.2020.2273) PubMed DOI PMC

Titon B Jr, Navas CA, Jim J, Gomes FR. 2010. Water balance and locomotor performance in three species of neotropical toads that differ in geographical distribution. Comp. Biochem. Physiol. A 156, 129-135. (10.1016/j.cbpa.2010.01.009) PubMed DOI

Barton MG, Clusella-Trullas S, Terblanche JS. 2019. Spatial scale, topography and thermoregulatory behaviour interact when modelling species’ thermal niches. Ecography 42, 376-389. (10.1111/ecog.03655) DOI

Lertzman-Lepofsky GF, Kissel AM, Sinervo B, Palen WJ. 2020. Water loss and temperature interact to compound amphibian vulnerability to climate change. Glob. Change Biol. 26, 4868-4879. (10.1111/gcb.15231) PubMed DOI

Riddell EA, Roback EY, Wells CE, Zamudio KR, Sears MW. 2019. Thermal cues drive plasticity of desiccation resistance in montane salamanders with implications for climate change. Nat. Commun. 10, 4091. (10.1038/s41467-019-11990-4) PubMed DOI PMC

Riddell EA, Mutanen M, Ghalambor CK. 2023. Hydric effects on thermal tolerances influence climate vulnerability in a high-latitude beetle. Glob. Change Biol. 29, 5184-5198. (10.1111/gcb.16830) PubMed DOI

Pirtle EI, Tracy CR, Kearney MR. 2019. Hydroregulation. A neglected behavioral response of lizards to climate change? In Behavior of lizards: evolutionary and mechanistic perspectives (ed. Bels VL). Boca Raton, FL: CRC Press.

Stark G, Ma L, Zeng Z, Du W, Levy O. 2023. Cool shade and not so cool shade: how habitat loss may accelerate thermal stress under current and future climate. Glob. Change Biol. 29, 6201-6216. (10.1111/gcb.16802) PubMed DOI

Kearney MR. 2013. Activity restriction and the mechanistic basis for extinctions under climate warming. Ecol. Lett. 16, 1470-1479. (10.1111/ele.12192) PubMed DOI

Woods HA, Dillon ME, Pincebourde S. 2015. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol. 54, 86-97. (10.1016/j.jtherbio.2014.10.002) PubMed DOI

Chou C-C, Perez DM, Johns S, Gardner R, Kerr KA, Head ML, McCullough EL, Backwell PRY. 2019. Staying cool: the importance of shade availability for tropical ectotherms. Behav. Ecol. Sociobiol. 73, 1-12. (10.1007/s00265-019-2721-9) DOI

Harris RMB, et al. 2018. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579-587. (10.1038/s41558-018-0187-9) DOI

Wang J, Chen Y, Tett SFB, Yan Z, Zhai P, Feng J, Xia J. 2020. Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun. 11, 528. (10.1038/s41467-019-14233-8) PubMed DOI PMC

Sandblom E, Gräns A, Axelsson M, Seth H. 2014. Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future. Proc. R. Soc. B 281, 20141490. (10.1098/rspb.2014.1490) PubMed DOI PMC

Terblanche JS, Chown SL. 2006. The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae). J. Exp. Biol. 209, 1064-1073. (10.1242/jeb.02129) PubMed DOI PMC

Norin T, Malte H, Clark TD. 2016. Differential plasticity of metabolic rate phenotypes in a tropical fish facing environmental change. Funct. Ecol. 30, 369-378. (10.1111/1365-2435.12503) DOI

Wikelski M, Cooke SJ. 2006. Conservation physiology. Trends Ecol. Evol. 21, 38-46. (10.1016/j.tree.2005.10.018) PubMed DOI

Cooke SJ, Hinch SG, Wikelski M, Andrews RD, Kuchel LJ, Wolcott TG, Butler PJ. 2004. Biotelemetry: a mechanistic approach to ecology. Trends Ecol. Evol. 19, 334-343. (10.1016/j.tree.2004.04.003) PubMed DOI

Kearney MR, Munns SL, Moore D, Malishev M, Bull CM. 2018. Field tests of a general ectotherm niche model show how water can limit lizard activity and distribution. Ecol. Monogr. 88, 672-693. (10.1002/ecm.1326) DOI

Enriquez-Urzelai U, Gvoždík L. 2024. Impacts of behaviour and acclimation of metabolic rate on energetics in sheltered ectotherms: a climate change perspective. Zenodo. (10.5281/zenodo.10589850) PubMed DOI

Enriquez-Urzelai U, Gvoždík L. 2024. Impacts of behaviour and acclimation of metabolic rate on energetics in sheltered ectotherms: a climate change perspective. Figshare. (10.6084/m9.figshare.c.7073654) PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...