Nejvíce citovaný článek - PubMed ID 26709345
Jet energy measurement and its systematic uncertainty in proton-proton collisions at [Formula: see text] TeV with the ATLAS detector
Searches for non-resonant and resonant Higgs boson pair production are performed in the γ γ W W ∗ channel with the final state of γ γ ℓ ν j j using 36.1 fb - 1 of proton-proton collision data recorded at a centre-of-mass energy of s = 13 TeV by the ATLAS detector at the Large Hadron Collider. No significant deviation from the Standard Model prediction is observed. A 95% confidence-level observed upper limit of 7.7 pb is set on the cross section for non-resonant production, while the expected limit is 5.4 pb. A search for a narrow-width resonance X decaying to a pair of Standard Model Higgs bosons HH is performed with the same set of data, and the observed upper limits on σ ( p p → X ) × B ( X → H H ) range between 40.0 and 6.1 pb for masses of the resonance between 260 and 500 GeV, while the expected limits range between 17.6 and 4.4 pb. When deriving the limits above, the Standard Model branching ratios of the H → γ γ and H → W W ∗ are assumed.
- Publikační typ
- časopisecké články MeSH
The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter's performance during the years 2008-2012 using cosmic-ray muon events and proton-proton collision data at centre-of-mass energies of 7 and 8 TeV with a total integrated luminosity of nearly 30 fb - 1 . The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton-proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report.
- Publikační typ
- časopisecké články MeSH
Previous studies have shown that weighted angular moments derived from jet constituents encode the colour connections between partons that seed the jets. This paper presents measurements of two such distributions, the jet-pull angle and jet-pull magnitude, both of which are derived from the jet-pull angular moment. The measurement is performed in t t ¯ events with one leptonically decaying W boson and one hadronically decaying W boson, using 36.1 fb - 1 of pp collision data recorded by the ATLAS detector at s = 13 TeV delivered by the Large Hadron Collider. The observables are measured for two dijet systems, corresponding to the colour-connected daughters of the W boson and the two b-jets from the top-quark decays, which are not expected to be colour connected. To allow the comparison of the measured distributions to colour model predictions, the measured distributions are unfolded to particle level, after correcting for experimental effects introduced by the detector. While good agreement can be found for some combinations of predictions and observables, none of the predictions describes the data well across all observables.
- Publikační typ
- časopisecké články MeSH
The inclusive and fiducial t t ¯ production cross-sections are measured in the lepton+jets channel using 20.2 fb - 1 of proton-proton collision data at a centre-of-mass energy of 8 TeV recorded with the ATLAS detector at the LHC. Major systematic uncertainties due to the modelling of the jet energy scale and b-tagging efficiency are constrained by separating selected events into three disjoint regions. In order to reduce systematic uncertainties in the most important background, the W +\,jets process is modelled using Z + jets events in a data-driven approach. The inclusive t t ¯ cross-section is measured with a precision of 5.7% to be σ inc ( t t ¯ ) = 248.3 ± 0.7 ( stat . ) ± 13.4 ( syst . ) ± 4.7 ( lumi . ) pb , assuming a top-quark mass of 172.5 GeV. The result is in agreement with the Standard Model prediction. The cross-section is also measured in a phase space close to that of the selected data. The fiducial cross-section is σ fid ( t t ¯ ) = 48.8 ± 0.1 ( stat . ) ± 2.0 ( syst . ) ± 0.9 ( lumi . ) pb with a precision of 4.5%.
- Publikační typ
- časopisecké články MeSH
The differential cross-section for the production of a W boson in association with a top quark is measured for several particle-level observables. The measurements are performed using 36.1 fb - 1 of pp collision data collected with the ATLAS detector at the LHC in 2015 and 2016. Differential cross-sections are measured in a fiducial phase space defined by the presence of two charged leptons and exactly one jet matched to a b-hadron, and are normalised with the fiducial cross-section. Results are found to be in good agreement with predictions from several Monte Carlo event generators.
- Publikační typ
- časopisecké články MeSH
This paper presents a measurement of the polarisation of τ leptons produced in Z / γ ∗ → τ τ decays which is performed with a dataset of proton-proton collisions at s = 8 TeV, corresponding to an integrated luminosity of 20.2 fb - 1 recorded with the ATLAS detector at the LHC in 2012. The Z / γ ∗ → τ τ decays are reconstructed from a hadronically decaying τ lepton with a single charged particle in the final state, accompanied by a τ lepton that decays leptonically. The τ polarisation is inferred from the relative fraction of energy carried by charged and neutral hadrons in the hadronic τ decays. The polarisation is measured in a fiducial region that corresponds to the kinematic region accessible to this analysis. The τ polarisation extracted over the full phase space within the Z / γ ∗ mass range of 66 < m Z / γ ∗ < 116 GeV is found to be P τ = - 0.14 ± 0.02 ( stat ) ± 0.04 ( syst ) . It is in agreement with the Standard Model prediction of P τ = - 0.1517 ± 0.0019 , which is obtained from the ALPGEN event generator interfaced with the PYTHIA 6 parton shower modelling and the TAUOLA τ decay library.
- Publikační typ
- časopisecké články MeSH
Measurements of transverse energy-energy correlations and their associated asymmetries in multi-jet events using the ATLAS detector at the LHC are presented. The data used correspond to s = 8 TeV proton-proton collisions with an integrated luminosity of 20.2 fb - 1 . The results are presented in bins of the scalar sum of the transverse momenta of the two leading jets, unfolded to the particle level and compared to the predictions from Monte Carlo simulations. A comparison with next-to-leading-order perturbative QCD is also performed, showing excellent agreement within the uncertainties. From this comparison, the value of the strong coupling constant is extracted for different energy regimes, thus testing the running of α s ( μ ) predicted in QCD up to scales over 1 TeV . A global fit to the transverse energy-energy correlation distributions yields α s ( m Z ) = 0.1162 ± 0.0011 (exp.) - 0.0070 + 0.0084 (theo.) , while a global fit to the asymmetry distributions yields a value of α s ( m Z ) = 0.1196 ± 0.0013 (exp.) - 0.0045 + 0.0075 (theo.) .
- Publikační typ
- časopisecké články MeSH
This paper presents single lepton and dilepton kinematic distributions measured in dileptonic t t ¯ events produced in 20.2 fb - 1 of s = 8 TeV pp collisions recorded by the ATLAS experiment at the LHC. Both absolute and normalised differential cross-sections are measured, using events with an opposite-charge e μ pair and one or two b-tagged jets. The cross-sections are measured in a fiducial region corresponding to the detector acceptance for leptons, and are compared to the predictions from a variety of Monte Carlo event generators, as well as fixed-order QCD calculations, exploring the sensitivity of the cross-sections to the gluon parton distribution function. Some of the distributions are also sensitive to the top quark pole mass; a combined fit of NLO fixed-order predictions to all the measured distributions yields a top quark mass value of m t pole = 173.2 ± 0.9 ± 0.8 ± 1.2 GeV, where the three uncertainties arise from data statistics, experimental systematics, and theoretical sources.
- Publikační typ
- časopisecké články MeSH
This paper presents a study of W W γ and W Z γ triboson production using events from proton-proton collisions at a centre-of-mass energy of s = 8 TeV recorded with the ATLAS detector at the LHC and corresponding to an integrated luminosity of 20.2 fb - 1 . The W W γ production cross-section is determined using a final state containing an electron, a muon, a photon, and neutrinos ( e ν μ ν γ ). Upper limits on the production cross-section of the e ν μ ν γ final state and the W W γ and W Z γ final states containing an electron or a muon, two jets, a photon, and a neutrino ( e ν j j γ or μ ν j j γ ) are also derived. The results are compared to the cross-sections predicted by the Standard Model at next-to-leading order in the strong-coupling constant. In addition, upper limits on the production cross-sections are derived in a fiducial region optimised for a search for new physics beyond the Standard Model. The results are interpreted in the context of anomalous quartic gauge couplings using an effective field theory. Confidence intervals at 95% confidence level are derived for the 14 coupling coefficients to which W W γ and W Z γ production are sensitive.
- Publikační typ
- časopisecké články MeSH
This paper presents a study of the production of WW or WZ boson pairs, with one W boson decaying to e ν or μ ν and one W or Z boson decaying hadronically. The analysis uses 20.2 fb - 1 of s = 8 TeV pp collision data, collected by the ATLAS detector at the Large Hadron Collider. Cross-sections for WW / WZ production are measured in high- p T fiducial regions defined close to the experimental event selection. The cross-section is measured for the case where the hadronically decaying boson is reconstructed as two resolved jets, and the case where it is reconstructed as a single jet. The transverse momentum distribution of the hadronically decaying boson is used to search for new physics. Observations are consistent with the Standard Model predictions, and 95% confidence intervals are calculated for parameters describing anomalous triple gauge-boson couplings.
- Publikační typ
- časopisecké články MeSH