Nejvíce citovaný článek - PubMed ID 26879585
The influence of Mg2+ coordination on 13C and 15N chemical shifts in CKI1RD protein domain from experiment and molecular dynamics/density functional theory calculations
By merging advanced dimensionality reduction (DR) and clustering algorithm (CA) techniques, our study advances the sampling procedure for predicting NMR chemical shifts (CS) in intrinsically disordered proteins (IDPs), making a significant leap forward in the field of protein analysis/modeling. We enhance NMR CS sampling by generating clustered ensembles that accurately reflect the different properties and phenomena encapsulated by the IDP trajectories. This investigation critically assessed different rapid CS predictors, both neural network (e.g., Sparta+ and ShiftX2) and database-driven (ProCS-15), and highlighted the need for more advanced quantum calculations and the subsequent need for more tractable-sized conformational ensembles. Although neural network CS predictors outperformed ProCS-15 for all atoms, all tools showed poor agreement with HN CSs, and the neural network CS predictors were unable to capture the influence of phosphorylated residues, highly relevant for IDPs. This study also addressed the limitations of using direct clustering with collective variables, such as the widespread implementation of the GROMOS algorithm. Clustered ensembles (CEs) produced by this algorithm showed poor performance with chemical shifts compared to sequential ensembles (SEs) of similar size. Instead, we implement a multiscale DR and CA approach and explore the challenges and limitations of applying these algorithms to obtain more robust and tractable CEs. The novel feature of this investigation is the use of solvent-accessible surface area (SASA) as one of the fingerprints for DR alongside previously investigated α carbon distance/angles or ϕ/ψ dihedral angles. The ensembles produced with SASA tSNE DR produced CEs better aligned with the experimental CS of between 0.17 and 0.36 r2 (0.18-0.26 ppm) depending on the system and replicate. Furthermore, this technique produced CEs with better agreement than traditional SEs in 85.7% of all ensemble sizes. This study investigates the quality of ensembles produced based on different input features, comparing latent spaces produced by linear vs nonlinear DR techniques and a novel integrated silhouette score scanning protocol for tSNE DR.
Multistep phosphorelay (MSP) cascades mediate responses to a wide spectrum of stimuli, including plant hormonal signaling, but several aspects of MSP await elucidation. Here, we provide first insight into the key step of MSP-mediated phosphotransfer in a eukaryotic system, the phosphorylation of the receiver domain of the histidine kinase CYTOKININ-INDEPENDENT 1 (CKI1RD) from Arabidopsis thaliana We observed that the crystal structures of free, Mg2+-bound, and beryllofluoridated CKI1RD (a stable analogue of the labile phosphorylated form) were identical and similar to the active state of receiver domains of bacterial response regulators. However, the three CKI1RD variants exhibited different conformational dynamics in solution. NMR studies revealed that Mg2+ binding and beryllofluoridation alter the conformational equilibrium of the β3-α3 loop close to the phosphorylation site. Mutations that perturbed the conformational behavior of the β3-α3 loop while keeping the active-site aspartate intact resulted in suppression of CKI1 function. Mechanistically, homology modeling indicated that the β3-α3 loop directly interacts with the ATP-binding site of the CKI1 histidine kinase domain. The functional relevance of the conformational dynamics observed in the β3-α3 loop of CKI1RD was supported by a comparison with another A. thaliana histidine kinase, ETR1. In contrast to the highly dynamic β3-α3 loop of CKI1RD, the corresponding loop of the ETR1 receiver domain (ETR1RD) exhibited little conformational exchange and adopted a different orientation in crystals. Biochemical data indicated that ETR1RD is involved in phosphorylation-independent signaling, implying a direct link between conformational behavior and the ability of eukaryotic receiver domains to participate in MSP.
- Klíčová slova
- X-ray crystallography, histidine kinase, nuclear magnetic resonance (NMR), protein dynamic, protein phosphorylation, receiver domain, relaxation dispersion,
- MeSH
- Arabidopsis enzymologie genetika MeSH
- krystalografie rentgenová MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- proteinkinasy chemie genetika MeSH
- proteinové domény MeSH
- proteiny huseníčku chemie genetika MeSH
- receptory buněčného povrchu chemie genetika MeSH
- sekundární struktura proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CKI1 protein, Arabidopsis MeSH Prohlížeč
- ETR1 protein, Arabidopsis MeSH Prohlížeč
- proteinkinasy MeSH
- proteiny huseníčku MeSH
- receptory buněčného povrchu MeSH