Nejvíce citovaný článek - PubMed ID 27429108
Electrocardiography in rats: a comparison to human
In in vivo cardiovascular or toxicological studies involving rat models, changes in selected electrocardiographic (ECG) parameters are monitored after various interventions to assess the origin and development of heart rhythm disorders. Each ECG parameter has diagnostic significance; as such, commonly evaluated ECG parameters, including heart rate, PR interval, P wave duration, P wave amplitude, QRS complex, QT and QTc interval duration, R wave and T wave amplitude, of rats under various types of general anesthesia were the focus of this study. Studies that performed in vivo cardiovascular or toxicological experiments in rats were retrieved from a search of the Web of Science database for articles published mainly between 2000 and 2021. In total, the search retrieved 123 articles. ECG parameters that were reported as baseline or control values were summarized and averages with ranges were calculated. It is important to be cautious when interpreting results and, in discussions addressing the mechanisms underlying a given type of arrhythmia, acknowledge that initial ECG parameters may already be affected to some extent by the general anesthesia as well as by sex and the time of day the experiments were performed.
Cardiovascular system and its functions under both physiological and pathophysiological conditions have been studied for centuries. One of the most important steps in the cardiovascular research was the possibility to record cardiac electrical activity. Since then, numerous modifications and improvements have been introduced; however, an electrocardiogram still represents a golden standard in this field. This paper overviews possibilities of ECG recordings in research and clinical practice, deals with advantages and disadvantages of various approaches, and summarizes possibilities of advanced data analysis. Special emphasis is given to state-of-the-art deep learning techniques intensely expanded in a wide range of clinical applications and offering promising prospects in experimental branches. Since, according to the World Health Organization, cardiovascular diseases are the main cause of death worldwide, studying electrical activity of the heart is still of high importance for both experimental and clinical cardiology.
- Klíčová slova
- ECG analysis, ECG recording, animal model, arrhythmia classification, artificial intelligence, deep learning, electrocardiogram, isolated heart,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH