Nejvíce citovaný článek - PubMed ID 27687771
CSL protein regulates transcription of genes required to prevent catastrophic mitosis in fission yeast
Within a eukaryotic cell, both lipid homeostasis and faithful cell cycle progression are meticulously orchestrated. The fission yeast Schizosaccharomyces pombe provides a powerful platform to study the intricate regulatory mechanisms governing these fundamental processes. In S. pombe, the Cbf11 and Mga2 proteins are transcriptional activators of non-sterol lipid metabolism genes, with Cbf11 also known as a cell cycle regulator. Despite sharing a common set of target genes, little was known about their functional relationship. This study reveals that Cbf11 and Mga2 function together in the same regulatory pathway, critical for both lipid metabolism and mitotic fidelity. Deletion of either gene results in a similar array of defects, including slow growth, dysregulated lipid homeostasis, impaired cell cycle progression (cut phenotype), abnormal cell morphology, perturbed transcriptomic and proteomic profiles, and compromised response to the stressors camptothecin and thiabendazole. Remarkably, the double deletion mutant does not exhibit a more severe phenotype compared to the single mutants. In addition, ChIP-nexus analysis reveals that both Cbf11 and Mga2 bind to nearly identical positions within the promoter regions of target genes. Interestingly, Mga2 binding appears to be dependent on the presence of Cbf11 and Cbf11 likely acts as a tether to DNA, while Mga2 is needed to activate the target genes. In addition, the study explores the distribution of Cbf11 and Mga2 homologs across fungi. The presence of both Cbf11 and Mga2 homologs in Basidiomycota contrasts with Ascomycota, which mostly lack Cbf11 but retain Mga2. This suggests an evolutionary rewiring of the regulatory circuitry governing lipid metabolism and mitotic fidelity. In conclusion, this study offers compelling support for Cbf11 and Mga2 functioning jointly to regulate lipid metabolism and mitotic fidelity in fission yeast.
- MeSH
- metabolismus lipidů * genetika MeSH
- mitóza * genetika MeSH
- regulace genové exprese u hub * MeSH
- Schizosaccharomyces pombe - proteiny * genetika metabolismus MeSH
- Schizosaccharomyces * genetika metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Schizosaccharomyces pombe - proteiny * MeSH
- transkripční faktory MeSH
Oxidative stress is associated with cardiovascular and neurodegenerative diseases, diabetes, cancer, psychiatric disorders and aging. In order to counteract, eliminate and/or adapt to the sources of stress, cells possess elaborate stress-response mechanisms, which also operate at the level of regulating transcription. Interestingly, it is becoming apparent that the metabolic state of the cell and certain metabolites can directly control the epigenetic information and gene expression. In the fission yeast Schizosaccharomyces pombe, the conserved Sty1 stress-activated protein kinase cascade is the main pathway responding to most types of stresses, and regulates the transcription of hundreds of genes via the Atf1 transcription factor. Here we report that fission yeast cells defective in fatty acid synthesis (cbf11, mga2 and ACC/cut6 mutants; FAS inhibition) show increased expression of a subset of stress-response genes. This altered gene expression depends on Sty1-Atf1, the Pap1 transcription factor, and the Gcn5 and Mst1 histone acetyltransferases, is associated with increased acetylation of histone H3 at lysine 9 in the corresponding gene promoters, and results in increased cellular resistance to oxidative stress. We propose that changes in lipid metabolism can regulate the chromatin and transcription of specific stress-response genes, which in turn might help cells to maintain redox homeostasis.
- MeSH
- acetyltransferasy genetika MeSH
- chromatin * metabolismus MeSH
- exprese genu MeSH
- fosforylace MeSH
- metabolismus lipidů * MeSH
- mitogenem aktivované proteinkinasy metabolismus MeSH
- oxidační stres * MeSH
- regulace genové exprese u hub MeSH
- Schizosaccharomyces pombe - proteiny * genetika MeSH
- Schizosaccharomyces * genetika MeSH
- transkripční faktory bZIP genetika MeSH
- transkripční faktory genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetyltransferasy MeSH
- Cbf11 protein, S pombe MeSH Prohlížeč
- chromatin * MeSH
- Gcn5 protein, S pombe MeSH Prohlížeč
- mitogenem aktivované proteinkinasy MeSH
- Pap1 protein, S pombe MeSH Prohlížeč
- Schizosaccharomyces pombe - proteiny * MeSH
- transkripční faktory bZIP MeSH
- transkripční faktory MeSH
Fission yeast 'cut' mutants show defects in temporal coordination of nuclear division with cytokinesis, resulting in aberrant mitosis and lethality. Among other causes, the 'cut' phenotype can be triggered by genetic or chemical perturbation of lipid metabolism, supposedly resulting in shortage of membrane phospholipids and insufficient nuclear envelope expansion during anaphase. Interestingly, penetrance of the 'cut' phenotype in mutants of the transcription factor cbf11 and acetyl-coenzyme A carboxylase cut6, both related to lipid metabolism, is highly dependent on growth media, although the specific nutrient(s) affecting 'cut' occurrence is not known. In this study, we set out to identify the growth media component(s) responsible for 'cut' phenotype suppression in Δcbf11 and cut6-621 cells. We show that mitotic defects occur rapidly in Δcbf11 cells upon shift from the minimal EMM medium ('cut' suppressing) to the complex YES medium ('cut' promoting). By growing cells in YES medium supplemented with individual EMM components, we identified ammonium chloride, an efficiently utilized nitrogen source, as a specific and potent suppressor of the 'cut' phenotype in both Δcbf11 and cut6-621. Furthermore, we found that ammonium chloride boosts lipid droplet formation in wild-type cells. Our findings suggest a possible involvement of nutrient-responsive signaling in 'cut' suppression.
- MeSH
- acetyl-CoA-karboxylasa genetika MeSH
- chlorid amonný chemie metabolismus farmakologie MeSH
- fenotyp MeSH
- kultivační média chemie MeSH
- lipidová tělíska účinky léků metabolismus MeSH
- metabolismus lipidů účinky léků genetika MeSH
- mitóza účinky léků genetika MeSH
- mutace MeSH
- penetrance MeSH
- Schizosaccharomyces pombe - proteiny genetika MeSH
- Schizosaccharomyces účinky léků genetika růst a vývoj metabolismus MeSH
- transkripční faktory genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetyl-CoA-karboxylasa MeSH
- Cbf11 protein, S pombe MeSH Prohlížeč
- chlorid amonný MeSH
- kultivační média MeSH
- Schizosaccharomyces pombe - proteiny MeSH
- transkripční faktory MeSH