Most cited article - PubMed ID 28235102
Molecular typing of Treponema pallidum isolates from Buenos Aires, Argentina: Frequent Nichols-like isolates and low levels of macrolide resistance
Knowledge of Treponema pallidum subspecies pallidum (TPA) outer membrane protein (OMP) sequence variability is essential for understanding spirochete proliferation within endemic populations as well as the design of a globally effective syphilis vaccine. Our group has identified extracellular loops (ECLs) of TPA BamA (TP0326) and members of the FadL family (TP0548, TP0856, TP0858, TP0859, and TP0865) as potential components of a multivalent vaccine cocktail. As part of a consortium to explore TPA strain diversity, we mapped the variability of BamA and FadL orthologs in 186 TPA strains from Malawi, China, and Colombia onto predicted 3D structures. The 186 genomes fell into eight subclades (five Nichols- and three SS14-lineage) with substantial geographic restriction. Single nucleotide variants accounted for the large majority of proteoforms, with variability notably higher within the Nichols-lineage strains. Most mutations were in regions of the proteins predicted to be extracellular and harboring B cell epitopes. We observed a striking difference in the degree of variability between the six OMPs, suggesting that these proteins are following divergent evolutionary paths. Concatenation of OMP sequences recapitulated the phylogenetic structure of the TPA strains, effectively segregating within clades and largely clustering by subclades. Finally, we noted that BamA and FadL candidate ECL vaccinogens, previously shown to elicit antibodies that kill treponemes during in vitro cultivation, are well conserved. Taken as a whole, our study establishes a structural-phylogenetic approach for analyzing the forces shaping the host-pathogen interface in syphilis within endemic populations while informing the selection of vaccine targets.IMPORTANCESyphilis remains a major global health concern, reinforcing the need for a safe and effective vaccine. Understanding the variability of TPA OMPs is essential for tracking pathogen evolution and informing vaccine design. Here, we analyzed the variability of six TPA OMPs in 186 strains from Malawi, China, and Colombia, identifying protein-specific evolutionary patterns. Most mutations were localized in extracellular regions and, notably, appeared to correlate with the phylogenetic structure of TPA. Despite OMP heterogeneity, several candidate vaccinogens remained highly conserved, reinforcing their potential as globally effective vaccine targets. Our study establishes a structural-phylogenetic framework for dissecting the forces shaping the host-spirochete interface within endemic populations and provides a foundation for designing a globally effective syphilis vaccine.
- Keywords
- outer membrane proteins, protein variability, syphilis, vaccines, whole-genome sequencing,
- MeSH
- Bacterial Vaccines * genetics immunology MeSH
- Phylogeny MeSH
- Genetic Variation * MeSH
- Humans MeSH
- Evolution, Molecular * MeSH
- Bacterial Outer Membrane Proteins * genetics immunology chemistry MeSH
- Syphilis microbiology prevention & control MeSH
- Treponema pallidum * genetics immunology classification MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- China MeSH
- Colombia MeSH
- Malawi MeSH
- Names of Substances
- Bacterial Vaccines * MeSH
- Bacterial Outer Membrane Proteins * MeSH
Globally, 94% of Treponema pallidum subsp. pallidum (TPA) clinical strains belong to the SS14-like group and 6% to the Nichols-like group, with a prevalence of macrolide resistance of 90%. Our goal was to determine whether local TPA strain distribution and macrolide resistance frequency have changed significantly since our last report, which revealed that Buenos Aires had a high frequency of Nichols-like strains (27%) and low levels of macrolide resistance (14%). Swab samples from patients with suspected syphilis were collected during 2015-2019 and loci TP0136, TP0548, TP0705 were sequenced in order to perform multilocus sequence typing. Strains were classified as Nichols-like or SS14-like. The presence of macrolide resistance-associated mutations was determined by examination of the 23S rDNA gene sequence. Of 46 typeable samples, 37% were classified as Nichols-like and 63% as SS14-like. Macrolide resistance prevalence was 45.7%. Seven allelic profiles were found, five were SS14-like and two were Nichols-like. The frequency of Nichols-like strains increased between studies (26.8% vs. 37%, p = 0.36). A dramatic increase was found in the frequency of macrolide resistant strains between studies (14.3% vs. 45.7%, p = 0.005). Our results are in agreement with international trends and underscore the need to pursue further TPA molecular typing studies in South America.
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Drug Resistance, Bacterial genetics MeSH
- Treponemal Infections * MeSH
- Humans MeSH
- Macrolides pharmacology MeSH
- Multilocus Sequence Typing MeSH
- DNA, Ribosomal MeSH
- Treponema pallidum * genetics MeSH
- Treponema MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Argentina epidemiology MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Macrolides MeSH
- DNA, Ribosomal MeSH
BACKGROUND: Treponema pallidum subspecies pallidum (TPA) and subsp. endemicum (TEN) are the causative agents of syphilis and bejel, respectively. TEN shows similar clinical manifestations and is morphologically and serologically indistinguishable from TPA. Recently, bejel was found outside of its assumed endemic areas. Using molecular typing we aimed to discover bejel and characterize circulating TPA types among syphilis cases with Surinamese, Antillean and Dutch ethnicity in Amsterdam. METHODS: DNA was extracted from 137 ulcer swabs, which tested positive in the in-house diagnostic PCR targeting the polA gene. Samples were collected between 2006 and 2018 from Surinamese, Antillean and Dutch patients attending the Amsterdam STI clinic. Multilocus sequence typing was performed by partial sequence analysis of the tp0136, tp0548 and tp0705 genes. In addition, the 23S rRNA loci were analyzed for A2058G and A2059G macrolide resistance mutations. RESULTS: We found 17 distinct allelic profiles in 103/137 (75%) fully typed samples, which were all TPA and none TEN. Of the strains, 82.5% were SS14-like and 17.5% Nichols-like. The prevalence of Nichols-like strains found in this study is relatively high compared to nearby countries. The most prevalent types were 1.3.1 (42%) and 1.1.1 (19%), in concordance with similar TPA typing studies. The majority of the TPA types found were unique per country. New allelic types (7) and profiles (10) were found. The successfully sequenced 23S rRNA loci from 123/137 (90%) samples showed the presence of 79% A2058G and 2% A2059G mutations. CONCLUSIONS: No TEN was found in the samples from different ethnicities residing in Amsterdam, the Netherlands, so no misdiagnoses occurred. Bejel has thus not (yet) spread as a sexually transmitted disease in the Netherlands. The strain diversity found in this study reflects the local male STI clinic population which is a diverse, mixed group.
- MeSH
- Alleles MeSH
- Genes, Bacterial * MeSH
- Adult MeSH
- Ethnicity statistics & numerical data MeSH
- Humans MeSH
- Syphilis epidemiology ethnology microbiology MeSH
- DNA Barcoding, Taxonomic MeSH
- Treponema pallidum classification genetics pathogenicity MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Netherlands Antilles MeSH
- Netherlands MeSH
- Suriname MeSH
Syphilis, caused by Treponema pallidum subsp. pallidum (TPA), remains an important public health problem with an increasing worldwide prevalence. Despite recent advances in in vitro cultivation, genetic variability of this pathogen during infection is poorly understood. Here, we present contemporary and geographically diverse complete treponemal genome sequences isolated directly from patients using a methyl-directed enrichment prior to sequencing. This approach reveals that approximately 50% of the genetic diversity found in TPA is driven by inter- and/or intra-strain recombination events, particularly in strains belonging to one of the defined genetic groups of syphilis treponemes: Nichols-like strains. Recombinant loci were found to encode putative outer-membrane proteins and the recombination variability was almost exclusively found in regions predicted to be at the host-pathogen interface. Genetic recombination has been considered to be a rare event in treponemes, yet our study unexpectedly showed that it occurs at a significant level and may have important impacts in the biology of this pathogen, especially as these events occur primarily in the outer membrane proteins. This study reveals the existence of strains with different repertoires of surface-exposed antigens circulating in the current human population, which should be taken into account during syphilis vaccine development.
A recently introduced Multilocus Sequence Typing scheme for Treponema pallidum subsp. pallidum was applied to clinical samples collected from 2004 to 2017 from the two largest cities (Prague and Brno) in the Czech Republic. Altogether, a total of 675 samples were tested in this study and 281 of them were found PCR-positive for treponemal DNA and typeable. Most of the typed samples (n = 281) were swabs from primary or secondary syphilis lesions (n = 231), and only a minority were whole blood or tissue samples (n = 50). Swab samples from patients with rapid plasma regain (RPR) values of 1-1024 were more frequently PCR-positive (84.6%) compared to samples from patients with non-reactive RPR test (46.5%; p-value = 0.0001). Out of 281 typeable samples, 136 were fully-typed at all TP0136, TP0548, and TP0705 loci. Among the fully and partially typed samples, 25 different allelic profiles were identified. Altogether, eight novel allelic variants were found among fully (n = 5) and partially (n = 3) typed samples. The distribution of TPA allelic profiles identified in the Czech Republic from 2004 to 2017 revealed a dynamic character with allelic profiles disappearing and emerging over time. While the number of samples with the A2058G mutation was seen to increase (86.7% in 2016/2017), the number of samples harboring the A2059G mutation was found to have decreased over time (3.3% in 2016/2017). In addition, we found several allelic profile associations with macrolide resistance or susceptibility, the gender of patients, as well as patient residence.
- MeSH
- Alleles MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Drug Resistance, Bacterial genetics MeSH
- DNA, Bacterial genetics MeSH
- Adult MeSH
- Genotype MeSH
- Humans MeSH
- Young Adult MeSH
- Multilocus Sequence Typing * MeSH
- RNA, Ribosomal, 23S genetics MeSH
- Syphilis genetics microbiology pathology MeSH
- Treponema pallidum genetics pathogenicity MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic epidemiology MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- DNA, Bacterial MeSH
- RNA, Ribosomal, 23S MeSH
Treponema pallidum subsp. pallidum is the causative agent of syphilis, a sexually transmitted disease with worldwide prevalence. Several different molecular typing schemes are currently available for this pathogen. To enable population biology studies of the syphilis agent and for epidemiological surveillance at the global scale, a harmonized typing tool needs to be introduced. Recently, we published a new multi-locus sequence typing (MLST) with the potential to significantly enhance the epidemiological data in several aspects (e.g., distinguishing genetically different clades of syphilis, subtyping inside these clades, and finally, distinguishing different subspecies of non-cultivable pathogenic treponemes). In this short report, we introduce the PubMLST database for treponemal DNA data storage and for assignments of allelic profiles and sequencing types. Moreover, we have summarized epidemiological data of all treponemal strains (n = 358) with available DNA sequences in typing loci and found several association between genetic groups and characteristics of patients. This study proposes the establishment of a single MLST of T. p. pallidum and encourages researchers and public health communities to use this PubMLST database as a universal tool for molecular typing studies of the syphilis pathogen.
- Keywords
- Molecular typing, PubMLST, Treponema pallidum subsp. pallidum,
- Publication type
- Journal Article MeSH
BACKGROUND: Treponema pallidum subsp. pertenue (TPE) is the causative agent of yaws, a multistage disease endemic in tropical regions in Africa, Asia, Oceania, and South America. To date, seven TPE strains have been completely sequenced and analyzed including five TPE strains of human origin (CDC-2, CDC 2575, Gauthier, Ghana-051, and Samoa D) and two TPE strains isolated from the baboons (Fribourg-Blanc and LMNP-1). This study revealed the complete genome sequences of two TPE strains, Kampung Dalan K363 and Sei Geringging K403, isolated in 1990 from villages in the Pariaman region of Sumatra, Indonesia and compared these genome sequences with other known TPE genomes. METHODOLOGY/PRINCIPAL FINDINGS: The genomes were determined using the pooled segment genome sequencing method combined with the Illumina sequencing platform resulting in an average coverage depth of 1,021x and 644x for the TPE Kampung Dalan K363 and TPE Sei Geringging K403 genomes, respectively. Both Indonesian TPE strains were genetically related to each other and were more distantly related to other, previously characterized TPE strains. The modular character of several genes, including TP0136 and TP0858 gene orthologs, was identified by analysis of the corresponding sequences. To systematically detect genes potentially having a modular genetic structure, we performed a whole genome analysis-of-occurrence of direct or inverted repeats of 17 or more nucleotides in length. Besides in tpr genes, a frequent presence of repeats was found in the genetic regions spanning TP0126-TP0136, TP0856-TP0858, and TP0896 genes. CONCLUSIONS/SIGNIFICANCE: Comparisons of genome sequences of TPE Kampung Dalan K363 and Sei Geringging K403 with other TPE strains revealed a modular structure of several genomic loci including the TP0136, TP0856, and TP0858 genes. Diversification of TPE genomes appears to be facilitated by intra-strain genome recombination events.
- MeSH
- Genome, Bacterial * MeSH
- Humans MeSH
- Gene Order MeSH
- Recombination, Genetic MeSH
- Repetitive Sequences, Nucleic Acid MeSH
- Sequence Analysis, DNA * MeSH
- Treponema pallidum genetics MeSH
- Computational Biology MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Indonesia MeSH
Syphilis is an important public health problem and an increasing incidence has been noted in recent years. Characterization of strain diversity through molecular data plays a critical role in the epidemiological understanding of this re-emergence. We here propose a new high-resolution multilocus sequence typing (MLST) scheme for Treponema pallidum subsp. pallidum (TPA). We analyzed 30 complete and draft TPA genomes obtained directly from clinical samples or from rabbit propagated strains to identify suitable typing loci and tested the new scheme on 120 clinical samples collected in Switzerland and France. Our analyses yielded three loci with high discriminatory power: TP0136, TP0548, and TP0705. Together with analysis of the 23S rRNA gene mutations for macrolide resistance, we propose these loci as MLST for TPA. Among clinical samples, 23 allelic profiles as well as a high percentage (80% samples) of macrolide resistance were revealed. The new MLST has higher discriminatory power compared to previous typing schemes, enabling distinction of TPA from other treponemal bacteria, distinction between the two main TPA clades (Nichols and SS14), and differentiation of strains within these clades.
- MeSH
- Alleles MeSH
- Anti-Bacterial Agents pharmacology MeSH
- DNA, Bacterial genetics MeSH
- Phylogeny MeSH
- Genome, Bacterial MeSH
- Genotype MeSH
- Globus Pallidus MeSH
- Polymorphism, Single Nucleotide MeSH
- Macrolides pharmacology MeSH
- Multilocus Sequence Typing methods MeSH
- RNA, Ribosomal, 23S genetics MeSH
- Sequence Analysis, DNA methods MeSH
- Syphilis epidemiology MeSH
- Treponema pallidum genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- France epidemiology MeSH
- Switzerland epidemiology MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- DNA, Bacterial MeSH
- Macrolides MeSH
- RNA, Ribosomal, 23S MeSH
Treponema pallidum subsp. pallidum, the causative agent of sexually transmitted syphilis, detected in clinical samples from France, was subjected to molecular typing using the recently developed Multilocus Sequence Typing system. The samples (n = 133) used in this study were collected from 2010-2016 from patients with diagnosed primary or secondary syphilis attending outpatient centers or hospitals in several locations in France. Altogether, 18 different allelic profiles were found among the fully typed samples (n = 112). There were five allelic variants identified for TP0136, 12 for TP0548, and eight for TP0705. Out of the identified alleles, one, seven, and three novel alleles were identified in TP0136, TP0548, and TP0705, respectively. Partial allelic profiles were obtained from 6 samples. The majority of samples (n = 110) belonged to the SS14-like cluster of TPA isolates while 7 clustered with Nichols-like isolates. Patients infected with Nichols-like samples were more often older (p = 0.041) and more often diagnosed with secondary syphilis (p = 0.033) compared to patients infected with SS14-like samples. In addition, macrolide resistance caused by the A2058G mutation was found to be associated with allelic profile 1.3.1 or with strains belonging to the 1.3.1 lineage (p<0.001). The genetic diversity among TPA strains infecting the European population was surprisingly high, which suggests that additional studies are needed to reveal the full genetic diversity of TPA pathogens infecting humans.
- MeSH
- Alleles MeSH
- Biodiversity MeSH
- Child MeSH
- Adult MeSH
- Infant MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Multilocus Sequence Typing MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- Aged MeSH
- Syphilis epidemiology microbiology MeSH
- Bacterial Typing Techniques MeSH
- Treponema pallidum genetics isolation & purification MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Infant MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- France epidemiology MeSH
In recent years, considerable progress has been made in topologically and functionally characterizing integral outer membrane proteins (OMPs) of Treponema pallidum subspecies pallidum, the syphilis spirochete, and identifying its surface-exposed β-barrel domains. Extracellular loops in OMPs of Gram-negative bacteria are known to be highly variable. We examined the sequence diversity of β-barrel-encoding regions of tprC, tprD, and bamA in 31 specimens from Cali, Colombia; San Francisco, California; and the Czech Republic and compared them to allelic variants in the 41 reference genomes in the NCBI database. To establish a phylogenetic framework, we used T. pallidum 0548 (tp0548) genotyping and tp0558 sequences to assign strains to the Nichols or SS14 clades. We found that (i) β-barrels in clinical strains could be grouped according to allelic variants in T. pallidum subsp. pallidum reference genomes; (ii) for all three OMP loci, clinical strains within the Nichols or SS14 clades often harbored β-barrel variants that differed from the Nichols and SS14 reference strains; and (iii) OMP variable regions often reside in predicted extracellular loops containing B-cell epitopes. On the basis of structural models, nonconservative amino acid substitutions in predicted transmembrane β-strands of T. pallidum repeat C (TprC) and TprD2 could give rise to functional differences in their porin channels. OMP profiles of some clinical strains were mosaics of different reference strains and did not correlate with results from enhanced molecular typing. Our observations suggest that human host selection pressures drive T. pallidum subsp. pallidum OMP diversity and that genetic exchange contributes to the evolutionary biology of T. pallidum subsp. pallidum They also set the stage for topology-based analysis of antibody responses to OMPs and help frame strategies for syphilis vaccine development.IMPORTANCE Despite recent progress characterizing outer membrane proteins (OMPs) of Treponema pallidum, little is known about how their surface-exposed, β-barrel-forming domains vary among strains circulating within high-risk populations. In this study, sequences for the β-barrel-encoding regions of three OMP loci, tprC, tprD, and bamA, in T. pallidum subsp. pallidum isolates from a large number of patient specimens from geographically disparate sites were examined. Structural models predict that sequence variation within β-barrel domains occurs predominantly within predicted extracellular loops. Amino acid substitutions in predicted transmembrane strands that could potentially affect porin channel function were also noted. Our findings suggest that selection pressures exerted within human populations drive T. pallidum subsp. pallidum OMP diversity and that recombination at OMP loci contributes to the evolutionary biology of syphilis spirochetes. These results also set the stage for topology-based analysis of antibody responses that promote clearance of T. pallidum subsp. pallidum and frame strategies for vaccine development based upon conserved OMP extracellular loops.
- Keywords
- Treponema pallidum, molecular subtyping, outer membrane proteins, spirochetes, syphilis,
- MeSH
- Phylogeny MeSH
- Genetic Variation MeSH
- Humans MeSH
- Evolution, Molecular * MeSH
- Molecular Sequence Data MeSH
- Protein Domains MeSH
- Bacterial Outer Membrane Proteins chemistry genetics metabolism MeSH
- Amino Acid Sequence MeSH
- Base Sequence MeSH
- Sequence Alignment MeSH
- Spirochaetales classification genetics growth & development isolation & purification MeSH
- Syphilis microbiology MeSH
- Treponema pallidum classification genetics growth & development isolation & purification MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Bacterial Outer Membrane Proteins MeSH