Most cited article - PubMed ID 28382387
High soluble endoglin levels do not induce changes in structural parameters of mouse heart
Soluble endoglin (sEng) released into the circulation was suggested to be related to cardiovascular based pathologies. It was demonstrated that a combination of high sEng levels and long-term exposure (six months) to high fat diet (HFD) resulted in aggravation of endothelial dysfunction in the aorta. Thus, in this study, we hypothesized that a similar experimental design would affect the heart morphology, TGFβ signaling, inflammation, fibrosis, oxidative stress and eNOS signaling in myocardium in transgenic mice overexpressing human sEng. Three-month-old female transgenic mice overexpressing human sEng in plasma (Sol-Eng+ high) and their age-matched littermates with low levels of human sEng (Sol-Eng+ low) were fed a high-fat diet containing 1.25% of cholesterol and 40% of fat for six months. A blood analysis was performed, and the heart samples were analyzed by qRT-PCR and Western blot. The results of this study showed no effects of sEng and HFD on myocardial morphology/hypertrophy/fibrosis. However, the expression of pSmad2/3 and p-eNOS was reduced in Sol-Eng+ high mice. On the other hand, sEng and HFD did not significantly affect the expression of selected members of TGFβ signaling (membrane endoglin, TGFβRII, ALK-5, ALK-1, Id-1, PAI-1), inflammation (VCAM-1, ICAM-1), oxidative stress (NQO1, HO-1) and heart remodeling (PDGFβ, COL1A1, β-MHC). In conclusion, the results of this study confirmed that sEng, even combined with a high-fat diet inducing hypercholesterolemia administered for six months, does not affect the structure of the heart with respect to hypertrophy, fibrosis, inflammation and oxidative stress. Interestingly, pSmad2/3/p-eNOS signaling was reduced in both the heart in this study and the aorta in the previous study, suggesting a possible alteration of NO metabolism caused by six months exposure to high sEng levels and HFD. Thus, we might conclude that sEng combined with a high-fat diet might be related to the alteration of NO production due to altered pSmad2/3/p-eNOS signaling in the heart and aorta.
- MeSH
- Aorta metabolism pathology MeSH
- Diet, High-Fat adverse effects MeSH
- Endoglin * blood metabolism MeSH
- Fibrosis MeSH
- Hypercholesterolemia metabolism MeSH
- Hypertrophy MeSH
- Myocardium metabolism pathology MeSH
- Mice, Inbred C57BL MeSH
- Mice, Transgenic MeSH
- Mice MeSH
- Nitric Oxide metabolism MeSH
- Oxidative Stress MeSH
- Inflammation MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Endoglin * MeSH
- ENG protein, human MeSH Browser
- Nitric Oxide MeSH