Most cited article - PubMed ID 28504034
A simulation of loading doses for vancomycin continuous infusion regimens in intensive care
OBJECTIVES: Due to the high interindividual variability in vancomycin pharmacokinetics, optimisation of its dosing is still challenging. This study aimed to explore vancomycin pharmacokinetics in adult patients and to propose an easy applicable dosing nomogram for initial treatment. METHODS: Vancomycin pharmacokinetics was calculated in a two-compartmental model based on therapeutic drug monitoring data. A linear regression model was used to explore the relationship between vancomycin elimination half-life and glomerular filtration rate estimated according the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula. RESULTS: In the whole study population (n=66), vancomycin volume of distribution, clearance and half-life median (IQR) values were 0.69 (0.58-0.87) L/kg, 0.031 (0.022-0.050) L/h/kg and 14.4 (9.5-25.2) hours, respectively. Vancomycin half-life was associated with glomerular filtration rate (r2=0.4126, p<0.0001) according to the formula: t1/2 (h) = -0.247×eGFRCKD-EPI (mL/min/1.73 m2)+32.89. This relationship was used to construct a dosing nomogram. CONCLUSIONS: We propose an easy-to-use dosing nomogram for vancomycin therapy initiation that allows individualisation of the dosing interval with respect to the administered dose size and functional renal status.
- Keywords
- CKD-EPI, dosing nomogram, glomerular filtration, pharmacokinetics, therapeutic drug monitoring, vancomycin,
- MeSH
- Anti-Bacterial Agents * MeSH
- Adult MeSH
- Glomerular Filtration Rate MeSH
- Kidney physiology MeSH
- Humans MeSH
- Drug Monitoring MeSH
- Vancomycin * MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents * MeSH
- Vancomycin * MeSH
The study presents a novel vancomycin-releasing collagen wound dressing derived from Cyprinus carpio collagen type I cross-linked with carbodiimide which retarded the degradation rate and increased the stability of the sponge. Following lyophilization, the dressings were subjected to gamma sterilization. The structure was evaluated via scanning electron microscopy images, micro-computed tomography, and infrared spectrometry. The structural stability and vancomycin release properties were evaluated in phosphate buffered saline. Microbiological testing and a rat model of a wound infected with methicillin-resistant Staphylococcus aureus (MRSA) were then employed to test the efficacy of the treatment of the infected wound. Following an initial mass loss due to the release of vancomycin, the sponges remained stable. After 7 days of exposure in phosphate buffered saline (37°C), 60% of the material remained with a preserved collagen secondary structure together with a high degree of open porosity (over 80%). The analysis of the release of vancomycin revealed homogeneous distribution of the antibiotic both across and between the sponges. The release of vancomycin was retarded as proved by in vitro testing and further confirmed by the animal model from which measurable concentrations were observed in blood samples 24 hours after the subcutaneous implantation of the sponge, which was more than observed following intraperitoneal administration. The sponge was also highly effective in terms of reducing the number of colony-forming units in biopsies extracted from the infected wounds 4 days following the inoculation of the wounds with the MRSA solution. The presented sponges have ideal properties to serve as wound dressing for prevention of surgical site infection or treatment of already infected wounds.
- MeSH
- Anti-Bacterial Agents pharmacokinetics MeSH
- Wound Healing drug effects MeSH
- Carps MeSH
- Carbodiimides pharmacokinetics MeSH
- Collagen pharmacokinetics MeSH
- Rats MeSH
- Methicillin-Resistant Staphylococcus aureus drug effects MeSH
- Bandages MeSH
- Vancomycin pharmacokinetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Carbodiimides MeSH
- Collagen MeSH
- Vancomycin MeSH