Most cited article - PubMed ID 29027325
Ecological plant epigenetics: Evidence from model and non-model species, and the way forward
Plasticity is found in all domains of life and is particularly relevant when populations experience variable environmental conditions. Traditionally, evolutionary models of plasticity are non-mechanistic: they typically view reactions norms as the target of selection, without considering the underlying genetics explicitly. Consequently, there have been difficulties in understanding the emergence of plasticity, and in explaining its limits and costs. In this paper, we offer a novel mechanistic approximation for the emergence and evolution of plasticity. We simulate random "epigenetic mutations" in the genotype-phenotype mapping, of the kind enabled by DNA-methylations/demethylations. The frequency of epigenetic mutations at loci affecting the phenotype is sensitive to organism stress (trait-environment mismatch), but is also genetically determined and evolvable. Thus, the "random motion" of epigenetic markers enables developmental learning-like behaviors that can improve adaptation within the limits imposed by the genotypes. However, with random motion being "goal-less," this mechanism is also vulnerable to developmental noise leading to maladaptation. Our individual-based simulations show that epigenetic mutations can hide alleles that are temporarily unfavorable, thus enabling cryptic genetic variation. These alleles can be advantageous at later times, under regimes of environmental change, in spite of the accumulation of genetic loads. Simulations also demonstrate that plasticity is favored by natural selection in constant environments, but more under periodic environmental change. Plasticity also evolves under directional environmental change as long as the pace of change is not too fast and costs are low.
- Keywords
- costs, cryptic variation, epigenetics, evolution, limits, mechanism, methylation, model, phenotypic plasticity,
- Publication type
- Journal Article MeSH
Epigenetic regulation of gene expression is expected to be an important mechanism behind phenotypic plasticity. Whether epigenetic regulation affects species ecophysiological adaptations to changing climate remains largely unexplored. We compared ecophysiological traits between individuals treated with 5-azaC, assumed to lead to DNA demethylation, with control individuals of a clonal grass originating from and grown under different climates, simulating different directions and magnitudes of climate change. We linked the ecophysiological data to proxies of fitness. Main effects of plant origin and cultivating conditions predicted variation in plant traits, but 5-azaC did not. Effects of 5-azaC interacted with conditions of cultivation and plant origin. The direction of the 5-azaC effects suggests that DNA methylation does not reflect species long-term adaptations to climate of origin and species likely epigenetically adjusted to the conditions experienced during experiment set-up. Ecophysiology translated to proxies of fitness, but the intensity and direction of the relationships were context dependent and affected by 5-azaC. The study suggests that effects of DNA methylation depend on conditions of plant origin and current climate. Direction of 5-azaC effects suggests limited role of epigenetic modifications in long-term adaptation of plants. It rather facilitates fast adaptations to temporal fluctuations of the environment.
- MeSH
- Azacitidine pharmacology MeSH
- Epigenesis, Genetic * MeSH
- Climate Change MeSH
- Humans MeSH
- DNA Methylation * MeSH
- Genes, Plant MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Azacitidine MeSH
Stress can be remembered by plants in a form of stress legacy that can alter future phenotypes of previously stressed plants and even phenotypes of their offspring. DNA methylation belongs among the mechanisms mediating the stress legacy. It is however not known for how long the stress legacy is carried by plants. If the legacy is long-lasting, it can become maladaptive in situations when parental-offspring environment do not match. We investigated for how long after the last exposure of a parental plant to drought can the phenotype of its clonal offspring be altered. We grew parental plants of three genotypes of Trifolium repens for five months either in control conditions or in control conditions that were interrupted with intense drought periods applied for two months in four different time slots. We also treated half of the parental plants with a demethylating agent (5-azacytidine, 5-azaC) to test for the potential role of DNA methylation in the stress memory. Then, we transplanted parental cuttings (ramets) individually to control environment and allowed them to produce offspring ramets for two months. The drought stress experienced by parents affected phenotypes of offspring ramets. The stress legacy resulted in enhanced number of offspring ramets originating from plants that experienced drought stress even 56 days before their transplantation to the control environment. 5-azaC altered transgenerational effects on offspring ramets. We confirmed that drought stress can trigger transgenerational effects in T. repens that is very likely mediated by DNA methylation. Most importantly, the stress legacy in parental plants persisted for at least 8 weeks suggesting that the stress legacy can persist in a clonal plant Trifolium repens for relatively long period. We suggest that the stress legacy should be considered in future ecological studies on clonal plants.
- Keywords
- 5‐azacytidine, DNA methylation, epigenetic memory, stress legacy persistence,
- Publication type
- Journal Article MeSH
BACKGROUND AND AIMS: The observed positive diversity effect on ecosystem functioning has rarely been assessed in terms of intraspecific trait variability within populations. Intraspecific phenotypic variability could stem both from underlying genetic diversity and from plasticity in response to environmental cues. The latter might derive from modifications to a plant's epigenome and potentially last multiple generations in response to previous environmental conditions. We experimentally disentangled the role of genetic diversity and diversity of parental environments on population productivity, resistance against environmental fluctuations and intraspecific phenotypic variation. METHODS: A glasshouse experiment was conducted in which different types of Arabidopsis thaliana populations were established: one population type with differing levels of genetic diversity and another type, genetically identical, but with varying diversity levels of the parental environments (parents grown in the same or different environments). The latter population type was further combined, or not, with experimental demethylation to reduce the potential epigenetic diversity produced by the diversity of parental environments. Furthermore, all populations were each grown under different environmental conditions (control, fertilization and waterlogging). Mortality, productivity and trait variability were measured in each population. KEY RESULTS: Parental environments triggered phenotypic modifications in the offspring, which translated into more functionally diverse populations when offspring from parents grown under different conditions were brought together in mixtures. In general, neither the increase in genetic diversity nor the increase in diversity of parental environments had a remarkable effect on productivity or resistance to environmental fluctuations. However, when the epigenetic variation was reduced via demethylation, mixtures were less productive than monocultures (i.e. negative net diversity effect), caused by the reduction of phenotypic differences between different parental origins. CONCLUSIONS: A diversity of environmental parental origins within a population could ameliorate the negative effect of competition between coexisting individuals by increasing intraspecific phenotypic variation. A diversity of parental environments could thus have comparable effects to genetic diversity. Disentangling the effect of genetic diversity and that of parental environments appears to be an important step in understanding the effect of intraspecific trait variability on coexistence and ecosystem functioning.
- Keywords
- Arabidopsis thaliana, DNA methylation, competition, epigenetic diversity, functional traits, genetic diversity, intraspecific phenotypic variability, parental effects, productivity, transgenerational effects,
- MeSH
- Arabidopsis * genetics MeSH
- Biological Variation, Population MeSH
- Ecosystem MeSH
- Phenotype MeSH
- Genetic Variation MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Clonal plants in heterogeneous environments can benefit from their habitat selection behavior, which enables them to utilize patchily distributed resources efficiently. It has been shown that such behavior can be strongly influenced by their memories on past environmental interactions. Epigenetic variation such as DNA methylation was proposed to be one of the mechanisms involved in the memory. Here, we explored whether the experience with Ultraviolet B (UV-B) radiation triggers epigenetic memory and affects clonal plants' foraging behavior in an UV-B heterogeneous environment. Parental ramets of Glechoma longituba were exposed to UV-B radiation for 15 days or not (controls), and their offspring ramets were allowed to choose light environment enriched with UV-B or not (the species is monopodial and can only choose one environment). Sizes and epigenetic profiles (based on methylation-sensitive amplification polymorphism analysis) of parental and offspring plants from different environments were also analyzed. Parental ramets that have been exposed to UV-B radiation were smaller than ramets from control environment and produced less and smaller offspring ramets. Offspring ramets were placed more often into the control light environment (88.46% ramets) than to the UV-B light environment (11.54% ramets) when parental ramets were exposed to UV-B radiation, which is a manifestation of "escape strategy." Offspring of control parental ramets show similar preference to the two light environments. Parental ramets exposed to UV-B had lower levels of overall DNA methylation and had different epigenetic profiles than control parental ramets. The methylation of UV-B-stressed parental ramets was maintained among their offspring ramets, although the epigenetic differentiation was reduced after several asexual generations. The parental experience with the UV-B radiation strongly influenced foraging behavior. The memory on the previous environmental interaction enables clonal plants to better interact with a heterogeneous environment and the memory is at least partly based on heritable epigenetic variation.
- Keywords
- UV-B radiation, clonal plant, epigenetic memory, foraging behavior, habitat selection, heterogeneous environment,
- Publication type
- Journal Article MeSH
In the context of climate changes, clarifying the causes underlying tree phenotypic plasticity and adaptation is crucial. Studies suggest a role of epigenetic mechanisms in response to external stimuli, raising the question whether such processes can promote acclimation of trees exposed to adverse climate conditions. Recently, we revealed an environmental epigenetic footprint in the shoot apical meristem (SAM) which could partially be transmitted mitotically, for several months, up until the winter-dormant bud in field conditions. Here, we extended our previous analysis to the leaves of the same P. deltoides×P. nigra clones. We aimed at estimating the range of developmentally, genetically, and environmentally induced variations on DNA methylation. We showed that only the first leaves emerging from the SAM displayed variations of DNA methylation under changing water conditions. We also found that these variations are genotype- and pedoclimatic site-dependent. Altogether, our data raised questions and perspectives on the direct acquisition, the maintenance of environmentally induced DNA methylation changes, and their mitotic transmission from the SAM to the first emerging leaves.
- Keywords
- DNA methylation, drought, epigenetic, leaves, poplar tree,
- MeSH
- Genotype MeSH
- Plant Leaves genetics MeSH
- Meristem genetics growth & development MeSH
- DNA Methylation genetics MeSH
- Populus genetics growth & development MeSH
- Trees genetics growth & development MeSH
- Environment * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Increasing evidence for epigenetic variation within and among natural plant populations has led to much speculation about its role in the evolution of plant phenotypes. However, we still have a very limited understanding of the evolutionary potential of epigenetic variation, in particular in comparison to DNA sequence-based variation. To address this question, we compared the magnitudes of heritable phenotypic variation in epigenetic recombinant inbred lines (epiRILs) of Arabidopsis thaliana-lines that mainly differ in DNA methylation but only very little in DNA sequence-with other types of A. thaliana lines that differ strongly also in DNA sequence. We grew subsets of two epiRIL populations with subsets of two genetic RIL populations, of natural ecotype collections, and of lines from a natural population in a common environment and assessed their heritable variation in growth, phenology, and fitness. Among-line phenotypic variation and broad-sense heritabilities tended to be largest in natural ecotypes, but for some traits the variation among epiRILs was comparable to that among RILs and natural ecotypes. Within-line phenotypic variation was generally similar in epiRILs, RILs, and ecotypes. Provided that phenotypic variation in epiRILs is mainly caused by epigenetic differences, whereas in RILs and natural lines it is largely driven by sequence variation, our results indicate that epigenetic variation has the potential to create phenotypic variation that is stable and substantial, and thus of evolutionary significance.
- MeSH
- Arabidopsis genetics physiology MeSH
- Biological Evolution * MeSH
- Biological Variation, Population MeSH
- DNA, Plant MeSH
- Ecotype * MeSH
- Epigenesis, Genetic * MeSH
- Genetic Variation * MeSH
- Quantitative Trait, Heritable * MeSH
- DNA Methylation MeSH
- Genetics, Population * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Plant MeSH