Nejvíce citovaný článek - PubMed ID 29052768
Phylogenetic trophic specialization: a robust comparison of herbivorous guilds
Temperate plants show a rapid seasonal turnover in various leaf traits and defenses. Such trends in plant defenses can potentially drive seasonal shifts in the specialization of insect herbivores. We quantified how non-volatile leaf metabolites, inducible volatile organic compounds (VOCs), C:N ratio and leaf toughness changed between the early, middle, and late seasons in five Salicaceae species and one Salix hybrid. We also explored seasonal trends in overall trait variation among the studied plants. We tested whether seasonal changes in dietary specialization of leaf-chewing larvae and adult beetles related to changes in the studied host-plant traits. Trait turnover occurred mainly through changes in VOCs and seasonal increase in traits that directly lower herbivore feeding efficiency. The overall variation in leaf traits was highest in the early season, with seasonal intraspecific variation being 33% smaller than the variation among species sampled at one time point. Although less frequently than we expected, the two groups of insect herbivores showed seasonal changes in specialization. The significant trends in herbivore specialization included peaks in the middle season for larval specialization based on VOCs and host phylogenetic relatedness and for adult beetle specialization based on C:N ratio plus leaf toughness. The detected species-specific trends in host-plant traits, their intraspecific variability, and differential trends among insect herbivores highlight the importance of considering seasonal variation when predicting trends in plant-herbivore interactions.
- Klíčová slova
- Chemical defenses, Leaf toughness, Salicinoids, Tannins, Volatile organic compounds,
- MeSH
- brouci fyziologie MeSH
- býložravci * MeSH
- larva fyziologie MeSH
- listy rostlin * MeSH
- roční období MeSH
- Salicaceae * MeSH
- těkavé organické sloučeniny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- těkavé organické sloučeniny MeSH
Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co-occurring plant species.Using a Holarctic dataset of exposed-feeding and shelter-building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.Our plant-caterpillar network data derived from plot-based samplings at three different continents included >28,000 individual caterpillar-plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed-feeding and shelter-building caterpillars.Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host-specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large-scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.
- Klíčová slova
- Lepidoptera, deciduous forests, feeding guilds, insect herbivores, phylogenetic isolation, shelter builders, specialization, species richness,
- Publikační typ
- časopisecké články MeSH