Nejvíce citovaný článek - PubMed ID 29081711
Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2
The performance of the missing transverse momentum ( E T miss ) reconstruction with the ATLAS detector is evaluated using data collected in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV in 2015. To reconstruct E T miss , fully calibrated electrons, muons, photons, hadronically decaying τ -leptons , and jets reconstructed from calorimeter energy deposits and charged-particle tracks are used. These are combined with the soft hadronic activity measured by reconstructed charged-particle tracks not associated with the hard objects. Possible double counting of contributions from reconstructed charged-particle tracks from the inner detector, energy deposits in the calorimeter, and reconstructed muons from the muon spectrometer is avoided by applying a signal ambiguity resolution procedure which rejects already used signals when combining the various E T miss contributions. The individual terms as well as the overall reconstructed E T miss are evaluated with various performance metrics for scale (linearity), resolution, and sensitivity to the data-taking conditions. The method developed to determine the systematic uncertainties of the E T miss scale and resolution is discussed. Results are shown based on the full 2015 data sample corresponding to an integrated luminosity of 3.2 fb - 1 .
- Publikační typ
- časopisecké články MeSH
Previous studies have shown that weighted angular moments derived from jet constituents encode the colour connections between partons that seed the jets. This paper presents measurements of two such distributions, the jet-pull angle and jet-pull magnitude, both of which are derived from the jet-pull angular moment. The measurement is performed in t t ¯ events with one leptonically decaying W boson and one hadronically decaying W boson, using 36.1 fb - 1 of pp collision data recorded by the ATLAS detector at s = 13 TeV delivered by the Large Hadron Collider. The observables are measured for two dijet systems, corresponding to the colour-connected daughters of the W boson and the two b-jets from the top-quark decays, which are not expected to be colour connected. To allow the comparison of the measured distributions to colour model predictions, the measured distributions are unfolded to particle level, after correcting for experimental effects introduced by the detector. While good agreement can be found for some combinations of predictions and observables, none of the predictions describes the data well across all observables.
- Publikační typ
- časopisecké články MeSH