Most cited article - PubMed ID 29167467
Chinese CO2 emission flows have reversed since the global financial crisis
China has enacted a number of ambitious pollution control policies to mitigate air pollution in urban areas. Unintended side effects of these policies to other environmental policy arenas and regions have largely been ignored. To bridge this gap, we use a multiregional input-output model in combination with an atmospheric chemical transport model to simulate clean air policy scenarios and evaluate their environmental impacts on primary PM2.5 and secondary precursor emissions, as well as CO2 emissions and water consumption, in the target region and spillover effects to other regions. Our results show that the reduction in primary PM2.5 and secondary precursor emissions in the target regions comes at the cost of increasing emissions especially in neighboring provinces. Similarly, co-benefits of lower CO2 emissions and reduced water consumption in the target region are achieved at the expense of higher impacts elsewhere, through outsourcing production to less developed regions in China.
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
As national efforts to reduce CO2 emissions intensify, policy-makers need increasingly specific, subnational information about the sources of CO2 and the potential reductions and economic implications of different possible policies. This is particularly true in China, a large and economically diverse country that has rapidly industrialized and urbanized and that has pledged under the Paris Agreement that its emissions will peak by 2030. We present new, city-level estimates of CO2 emissions for 182 Chinese cities, decomposed into 17 different fossil fuels, 46 socioeconomic sectors, and 7 industrial processes. We find that more affluent cities have systematically lower emissions per unit of gross domestic product (GDP), supported by imports from less affluent, industrial cities located nearby. In turn, clusters of industrial cities are supported by nearby centers of coal or oil extraction. Whereas policies directly targeting manufacturing and electric power infrastructure would drastically undermine the GDP of industrial cities, consumption-based policies might allow emission reductions to be subsidized by those with greater ability to pay. In particular, sector-based analysis of each city suggests that technological improvements could be a practical and effective means of reducing emissions while maintaining growth and the current economic structure and energy system. We explore city-level emission reductions under three scenarios of technological progress to show that substantial reductions (up to 31%) are possible by updating a disproportionately small fraction of existing infrastructure.
- MeSH
- Climate Change * MeSH
- Environmental Monitoring * MeSH
- Carbon Dioxide analysis MeSH
- Climate * MeSH
- Industry MeSH
- Cities MeSH
- Geography MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- China MeSH
- Cities MeSH
- Names of Substances
- Carbon Dioxide MeSH