Nejvíce citovaný článek - PubMed ID 29182321
Macrocycle Conformational Sampling by DFT-D3/COSMO-RS Methodology
Histone deacetylase (HDAC) inhibitors used in the clinic typically contain a hydroxamate zinc-binding group (ZBG). However, more recent work has shown that the use of alternative ZBGs, and, in particular, the heterocyclic oxadiazoles, can confer higher isoenzyme selectivity and more favorable ADMET profiles. Herein, we report on the synthesis and biochemical, crystallographic, and computational characterization of a series of oxadiazole-based inhibitors selectively targeting the HDAC6 isoform. Surprisingly, but in line with a very recent finding reported in the literature, a crystal structure of the HDAC6/inhibitor complex revealed that hydrolysis of the oxadiazole ring transforms the parent oxadiazole into an acylhydrazide through a sequence of two hydrolytic steps. An identical cleavage pattern was also observed both in vitro using the purified HDAC6 enzyme as well as in cellular systems. By employing advanced quantum and molecular mechanics (QM/MM) and QM calculations, we elucidated the mechanistic details of the two hydrolytic steps to obtain a comprehensive mechanistic view of the double hydrolysis of the oxadiazole ring. This was achieved by fully characterizing the reaction coordinate, including identification of the structures of all intermediates and transition states, together with calculations of their respective activation (free) energies. In addition, we ruled out several (intuitively) competing pathways. The computed data (ΔG‡ ≈ 21 kcal·mol-1 for the rate-determining step of the overall dual hydrolysis) are in very good agreement with the experimentally determined rate constants, which a posteriori supports the proposed reaction mechanism. We also clearly (and quantitatively) explain the role of the -CF3 or -CHF2 substituent on the oxadiazole ring, which is a prerequisite for hydrolysis to occur. Overall, our data provide compelling evidence that the oxadiazole warheads can be efficiently transformed within the active sites of target metallohydrolases to afford reaction products possessing distinct selectivity and inhibition profiles.
- MeSH
- histondeacetylasa 6 chemie MeSH
- hydrolýza MeSH
- inhibitory histondeacetylas * farmakologie MeSH
- kyseliny hydroxamové chemie MeSH
- oxadiazoly * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histondeacetylasa 6 MeSH
- inhibitory histondeacetylas * MeSH
- kyseliny hydroxamové MeSH
- oxadiazoly * MeSH
A series of carbamate-based inhibitors of glutamate carboxypeptidase II (GCPII) were designed and synthesized using ZJ-43, N-[[[(1S)-1-carboxy-3-methylbutyl]amino]carbonyl]-l-glutamic acid, as a molecular template in order to better understand the impact of replacing one of the two nitrogen atoms in the urea-based GCPII inhibitor with an oxygen atom. Compound 7 containing a C-terminal 2-oxypentanedioic acid was more potent than compound 5 containing a C-terminal glutamic acid (2-aminopentanedioic acid) despite GCPII's preference for peptides containing an N-terminal glutamate as substrates. Subsequent crystallographic analysis revealed that ZJ-43 and its two carbamate analogs 5 and 7 with the same (S,S)-stereochemical configuration adopt a nearly identical binding mode while (R,S)-carbamate analog 8 containing a d-leucine forms a less extensive hydrogen bonding network. QM and QM/MM calculations have identified no specific interactions in the GCPII active site that would distinguish ZJ-43 from compounds 5 and 7 and attributed the higher potency of ZJ-43 and compound 7 to the free energy changes associated with the transfer of the ligand from bulk solvent to the protein active site as a result of the lower ligand strain energy and solvation/desolvation energy. Our findings underscore a broader range of factors that need to be taken into account in predicting ligand-protein binding affinity. These insights should be of particular importance in future efforts to design and develop GCPII inhibitors for optimal inhibitory potency.
- Klíčová slova
- Crystal structure, Glutamate carboxypeptidase II, Metallopeptidase, Prostate-specific membrane antigen,
- MeSH
- buněčné linie MeSH
- Drosophila genetika MeSH
- enzymatické testy MeSH
- glutamátkarboxypeptidasa II antagonisté a inhibitory chemie metabolismus MeSH
- inhibitory proteas chemická syntéza chemie metabolismus MeSH
- karbamáty chemická syntéza chemie metabolismus MeSH
- katalytická doména MeSH
- kvantová teorie MeSH
- lidé MeSH
- močovina analogy a deriváty chemická syntéza chemie metabolismus MeSH
- molekulární modely MeSH
- stereoizomerie MeSH
- vazba proteinů MeSH
- vodíková vazba MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- glutamátkarboxypeptidasa II MeSH
- inhibitory proteas MeSH
- karbamáty MeSH
- močovina MeSH
- ZJ43 MeSH Prohlížeč