Nejvíce citovaný článek - PubMed ID 29404403
Electrical Stimulation Modulates High γ Activity and Human Memory Performance
Data comprise intracranial EEG (iEEG) brain activity represented by stereo EEG (sEEG) signals, recorded from over 100 electrode channels implanted in any one patient across various brain regions. The iEEG signals were recorded in epilepsy patients (N = 10) undergoing invasive monitoring and localization of seizures when they were performing a battery of four memory tasks lasting approx. 1 hour in total. Gaze tracking on the task computer screen with estimating the pupil size was also recorded together with behavioral performance. Each dataset comes from one patient with anatomical localization of each electrode contact. Metadata contains labels for the recording channels with behavioral events marked from all tasks, including timing of correct and incorrect vocalization of the remembered stimuli. The iEEG and the pupillometric signals are saved in BIDS data structure to facilitate efficient data sharing and analysis.
- MeSH
- elektrody MeSH
- elektrokortikografie * MeSH
- epilepsie patofyziologie MeSH
- lidé MeSH
- mozek fyziologie MeSH
- oční fixace MeSH
- paměť fyziologie MeSH
- pupila MeSH
- technologie sledování pohybu očí MeSH
- záchvaty patofyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Identification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable metrics that quantify spectral characteristics of the normalized iEEG signal based on power-in-band and synchrony measures. Unsupervised clustering of the metrics identified distinct sets of active electrodes across different subjects. In the total population of 11,869 electrodes, our method achieved 97% sensitivity and 92.9% specificity with the most efficient metric. We validated our results with anatomical localization revealing significantly greater distribution of active electrodes in brain regions that support verbal memory processing. We propose our machine-learning framework for objective and efficient classification and interpretation of electrophysiological signals of brain activities supporting memory and cognition.
- MeSH
- algoritmy MeSH
- biomedicínské inženýrství metody trendy MeSH
- datové soubory jako téma MeSH
- elektroencefalografie metody MeSH
- elektrofyziologické jevy MeSH
- elektrokortikografie * metody MeSH
- epilepsie diagnóza patofyziologie psychologie MeSH
- evokované potenciály fyziologie MeSH
- implantované elektrody * MeSH
- kognice fyziologie MeSH
- krátkodobá paměť fyziologie MeSH
- lidé MeSH
- mapování mozku metody MeSH
- mozek diagnostické zobrazování fyziologie MeSH
- plnění a analýza úkolů * MeSH
- retrospektivní studie MeSH
- senzitivita a specificita MeSH
- strojové učení bez učitele * MeSH
- verbální chování fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- validační studie MeSH
Processing of memory is supported by coordinated activity in a network of sensory, association, and motor brain regions. It remains a major challenge to determine where memory is encoded for later retrieval. Here, we used direct intracranial brain recordings from epilepsy patients performing free recall tasks to determine the temporal pattern and anatomical distribution of verbal memory encoding across the entire human cortex. High γ frequency activity (65-115 Hz) showed consistent power responses during encoding of subsequently recalled and forgotten words on a subset of electrodes localized in 16 distinct cortical areas activated in the tasks. More of the high γ power during word encoding, and less power before and after the word presentation, was characteristic of successful recall and observed across multiple brain regions. Latencies of the induced power changes and this subsequent memory effect (SME) between the recalled and forgotten words followed an anatomical sequence from visual to prefrontal cortical areas. Finally, the magnitude of the memory effect was unexpectedly found to be the largest in selected brain regions both at the top and at the bottom of the processing stream. These included the language processing areas of the prefrontal cortex and the early visual areas at the junction of the occipital and temporal lobes. Our results provide evidence for distributed encoding of verbal memory organized along a hierarchical posterior-to-anterior processing stream.
- Klíčová slova
- cognition, cortical mapping, electrocorticography, high-frequency oscillations, network oscillations,
- MeSH
- časové faktory MeSH
- elektrokortikografie MeSH
- gama rytmus EEG fyziologie MeSH
- lidé MeSH
- mapování mozku MeSH
- mozková kůra fyziologie patofyziologie MeSH
- percepce řeči fyziologie MeSH
- refrakterní epilepsie patofyziologie psychologie MeSH
- rozpomínání fyziologie MeSH
- slovní zásoba MeSH
- zraková percepce fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH