Most cited article - PubMed ID 29501549
Attracted by a magnet: Exploration behaviour of rodents in the presence of magnetic objects
African mole-rats are subterranean rodents that spend their whole life in underground burrow systems. They show a range of morphological and physiological adaptations to their ecotope, for instance severely reduced eyes and specialized somatosensory, olfactory, and auditory systems. These adaptations are also reflected in the accessory sensory pathways in the brain that process the input coming from the sensory organs. So far, a brain atlas was available only for the naked mole-rat (Heterocephalus glaber). The Ansell's mole-rat (Fukomys anselli) has been the subject of many investigations in various disciplines (ethology, sensory physiology, and anatomy) including magnetic orientation. It is therefore surprising that an atlas of the brain of this species was not available so far. Here, we present a comprehensive atlas of the Ansell's mole-rat brain based on Nissl and Klüver-Barrera stained sections. We identify and label 375 brain regions and discuss selected differences from the brain of the closely related naked mole-rat as well as from epigeic mammals (rat), with a particular focus on the auditory brainstem. This atlas can serve as a reference for future neuroanatomical investigations of subterranean mammals.
- Keywords
- Nissl, RRID:SCR_005910, RRID:SCR_014199, auditory system, magnetoreception, nervous system, neuroanatomy, rodent, subterranean mammal,
- MeSH
- Anatomy, Artistic * MeSH
- Atlases as Topic * MeSH
- Mole Rats anatomy & histology MeSH
- Brain anatomy & histology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Magnetoreception, the ability to sense the Earth's magnetic field (MF), is a widespread phenomenon in the animal kingdom. In 1966, the first report on a magnetosensitive vertebrate, the European robin (Erithacus rubecula), was published. After that, numerous further species of different taxa have been identified to be magnetosensitive as well. Recently, it has been demonstrated that domestic dogs (Canis lupus familiaris) prefer to align their body axis along the North-South axis during territorial marking under calm MF conditions and that they abandon this preference when the Earth's MF is unstable. In a further study conducting a directional two-choice-test, dogs showed a spontaneous preference for the northern direction. Being designated as putatively magnetosensitive and being also known as trainable for diverse choice and search tests, dogs seem to be suitable model animals for a direct test of magnetoreception: learning to find a magnet. Using operant conditioning dogs were trained to identify the MF of a bar magnet in a three-alternative forced-choice experiment. We excluded visual cues and used control trials with food treats to test for the role of olfaction in finding the magnet. While 13 out of 16 dogs detected the magnet significantly above chance level (53-73% success rate), none of the dogs managed to do so in finding the food treat (23-40% success rate). In a replication of the experiment under strictly blinded conditions five out of six dogs detected the magnet above chance level (53-63% success rate). These experiments support the existence of a magnetic sense in domestic dogs. Whether the sense enables dogs to perceive MFs as weak as the Earth's MF, if they use it for orientation, and by which mechanism the fields are perceived remain open questions.
- Keywords
- Behavioral test, Domestic dogs, Magnetoreception, Operant conditioning,
- Publication type
- Journal Article MeSH
Subterranean rodents are able to dig long straight tunnels. Keeping the course of such "runways" is important in the context of optimal foraging strategies and natal or mating dispersal. These tunnels are built in the course of a long time, and in social species, by several animals. Although the ability to keep the course of digging has already been described in the 1950s, its proximate mechanism could still not be satisfactorily explained. Here, we analyzed the directional orientation of 68 burrow systems in five subterranean rodent species (Fukomys anselli, F. mechowii, Heliophobius argenteocinereus, Spalax galili, and Ctenomys talarum) on the base of detailed maps of burrow systems charted within the framework of other studies and provided to us. The directional orientation of the vast majority of all evaluated burrow systems on the individual level (94%) showed a significant deviation from a random distribution. The second order statistics (averaging mean vectors of all the studied burrow systems of a respective species) revealed significant deviations from random distribution with a prevalence of north-south (H. argenteocinereus), NNW-SSE (C. talarum), and NE-SW (Fukomys mole-rats) oriented tunnels. Burrow systems of S. galili were randomly oriented. We suggest that the Earth's magnetic field acts as a common heading indicator, facilitating to keep the course of digging. This study provides a field test and further evidence for magnetoreception and its biological meaning in subterranean mammals. Furthermore, it lays the foundation for future field experiments.
- Keywords
- Burrow systems, Magnetoreception, Mole-rats, Orientation, Subterranean rodents,
- Publication type
- Journal Article MeSH