Most cited article - PubMed ID 29605131
Nanofiber polymers as novel sorbents for on-line solid phase extraction in chromatographic system: A comparison with monolithic reversed phase C18 sorbent
Polymeric nano- and microfibers were tested as potential sorbents for the extraction of five neonicotinoids from natural waters. Nanofibrous mats were prepared from polycaprolactone, polyvinylidene fluoride, polystyrene, polyamide 6, polyacrylonitrile, and polyimide, as well as microfibers of polyethylene, a polycaprolactone nano- and microfiber conjugate, and polycaprolactone microfibers combined with polyvinylidene fluoride nanofibers. Polyimide nanofibers were selected as the most suitable sorbent for these analytes and the matrix. A Lab-In-Syringe system enabled automated preconcentration via online SPE of large sample volumes at low pressure with analyte separation by HPLC. Several mat layers were housed in a solvent filter holder integrated into the injection loop of an HPLC system. After loading 2 mL sample on the sorbent, the mobile phase eluted the retained analytes onto the chromatographic column. Extraction efficiencies of 68.8-83.4% were achieved. Large preconcentration factors ranging from 70 to 82 allowed reaching LOD and LOQ values of 0.4 to 1.7 and 1.2 to 5.5 µg·L-1, respectively. Analyte recoveries from spiked river waters ranged from 53.8% to 113.3% at the 5 µg·L-1 level and from 62.8% to 119.8% at the 20 µg·L-1 level. The developed methodology proved suitable for the determination of thiamethoxam, clothianidin, imidacloprid, and thiacloprid, whereas matrix peak overlapping inhibited quantification of acetamiprid.
- Keywords
- Lab-In-Syringe, membrane preconcentration, nanofibers, neonicotinoids, online SPE,
- Publication type
- Journal Article MeSH
Polycaprolactone composite nanofibers coated with a polydopamine layer are introduced as a new type of absorption material for on-line solid phase extraction (SPE) in chromatographic system. A hybrid technology combining the electrospinning and melt blowing was used for the preparation of 3D-structured microfiber/nanofibrous polycaprolactone composite. The dopamine coating was then applied to functionalize the micro/nanofibers. Polydopamine-coated polycaprolactone fibers were tested as an extraction phase in on-line SPE prior to HPLC separation and UV detection. Four groups of biologically active substances including bisphenols (Bisphenol S, Bisphenol AF, Bisphenol A, Bisphenol C, Bisphenol AP, Bisphenol Z, Bisphenol BP, and Bisphenol M), betablockers (Timolol, Metoprolol, Labetalol, and Propranolol), nonsteroidal antiphlogistic drugs (Salicylic acid, Ketoprofen, Naproxen, Indomethacin, Diclofenac, Ibuprophen, and Meclofenamic acid), and phenolic acids (Chlorogenic acid, Caffeic acid, Sinapic acid, m-Coumaric acid, Benzoic acid, and Cinnamic acid) were used as the model analytes. Neat and coated fibers were compared and applied as sorbents for the on-line extraction set-up. Both materials produced good extraction potential for the determination of bisphenols and nonsteroidal drugs in model biological and environmental samples including river water, human urine, and blood serum. However, the polydopamine layer significantly increased the extraction efficiency of polar drugs. Typical repeatability of on-line extraction procedure on polydopamine coated fibers was in the range 0.12-4.11% for bisphenols, 0.55-1.41% for antiphlogistic drugs, 0.59-2.52% for phenolic acids, and 1.01-1.65% for betablockers. Graphical abstract Schematic representation of polycaprolactone composite nanofibers coated with a polydopamine layer as an advanced absorption material for on-line solid phase extraction in chromatography.
- Keywords
- Chromatography, Column switching, Degradation, Dopamine coating, Micro-column, Microfiber, Nanofiber, Polymerization, Solid phase extraction, Surface modification,
- MeSH
- Anti-Inflammatory Agents, Non-Steroidal analysis isolation & purification MeSH
- Adrenergic beta-Antagonists analysis isolation & purification MeSH
- Water Pollutants, Chemical analysis isolation & purification MeSH
- Cinnamates analysis isolation & purification MeSH
- Solid Phase Extraction methods MeSH
- Phenols analysis isolation & purification MeSH
- Indoles chemistry MeSH
- Nanofibers chemistry MeSH
- Polyesters chemistry MeSH
- Polymerization MeSH
- Polymers chemistry MeSH
- Rivers chemistry MeSH
- Reproducibility of Results MeSH
- Chromatography, High Pressure Liquid MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Inflammatory Agents, Non-Steroidal MeSH
- Adrenergic beta-Antagonists MeSH
- Water Pollutants, Chemical MeSH
- Cinnamates MeSH
- Phenols MeSH
- Indoles MeSH
- polycaprolactone MeSH Browser
- polydopamine MeSH Browser
- Polyesters MeSH
- Polymers MeSH