Most cited article - PubMed ID 30131482
Modified Methacrylate Hydrogels Improve Tissue Repair after Spinal Cord Injury
Spinal cord injury (SCI) is a serious trauma, which often results in a permanent loss of motor and sensory functions, pain and spasticity. Despite extensive research, there is currently no available therapy that would restore the lost functions after SCI in human patients. Advanced treatments use regenerative medicine or its combination with various interdisciplinary approaches such as tissue engineering or biophysical methods. This review summarizes and critically discusses the research from specific interdisciplinary fields in SCI treatment such as the development of biomaterials as scaffolds for tissue repair, and using a magnetic field for targeted cell delivery. We compare the treatment effects of synthetic non-degradable methacrylate-based hydrogels and biodegradable biological scaffolds based on extracellular matrix. The systems using magnetic fields for magnetically guided delivery of stem cells loaded with magnetic nanoparticles into the lesion site are then suggested and discussed.
- Keywords
- Biomaterials, Cell delivery, Hydrogel, Magnetic field, Spinal cord injury,
- MeSH
- Biocompatible Materials pharmacology therapeutic use MeSH
- Hydrogels therapeutic use MeSH
- Humans MeSH
- Magnetic Field Therapy methods trends MeSH
- Spinal Cord Injuries physiopathology therapy MeSH
- Nerve Regeneration drug effects physiology MeSH
- Stem Cell Transplantation methods trends MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Biocompatible Materials MeSH
- Hydrogels MeSH
- MeSH
- Humans MeSH
- Spinal Cord Injuries metabolism pathology therapy MeSH
- Nerve Regeneration MeSH
- Translational Research, Biomedical methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Introductory Journal Article MeSH
- Editorial MeSH