Nejvíce citovaný článek - PubMed ID 30149241
INTRODUCTION: Dysarthria, a motor speech disorder caused by muscle weakness or paralysis, severely impacts speech intelligibility and quality of life. The condition is prevalent in motor speech disorders such as Parkinson's disease (PD), atypical parkinsonism such as progressive supranuclear palsy (PSP), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Improving intelligibility is not only an outcome that matters to patients but can also play a critical role as an endpoint in clinical research and drug development. This study validates a digital measure for speech intelligibility, the ki: SB-M intelligibility score, across various motor speech disorders and languages following the Digital Medicine Society (DiMe) V3 framework. METHODS: The study used four datasets: healthy controls (HCs) and patients with PD, HD, PSP, and ALS from Czech, Colombian, and German populations. Participants' speech intelligibility was assessed using the ki: SB-M intelligibility score, which is derived from automatic speech recognition (ASR) systems. Verification with inter-ASR reliability and temporal consistency, analytical validation with correlations to gold standard clinical dysarthria scores in each disease, and clinical validation with group comparisons between HCs and patients were performed. RESULTS: Verification showed good to excellent inter-rater reliability between ASR systems and fair to good consistency. Analytical validation revealed significant correlations between the SB-M intelligibility score and established clinical measures for speech impairments across all patient groups and languages. Clinical validation demonstrated significant differences in intelligibility scores between pathological groups and healthy controls, indicating the measure's discriminative capability. DISCUSSION: The ki: SB-M intelligibility score is a reliable, valid, and clinically relevant tool for assessing speech intelligibility in motor speech disorders. It holds promise for improving clinical trials through automated, objective, and scalable assessments. Future studies should explore its utility in monitoring disease progression and therapeutic efficacy as well as add data from further dysarthrias to the validation.
Parkinson's disease (PD) and essential tremor (ET) are prevalent movement disorders that mainly affect elderly people, presenting diagnostic challenges due to shared clinical features. While both disorders exhibit distinct speech patterns-hypokinetic dysarthria in PD and hyperkinetic dysarthria in ET-the efficacy of speech assessment for differentiation remains unexplored. Developing technology for automatic discrimination could enable early diagnosis and continuous monitoring. However, the lack of data for investigating speech behavior in these patients has inhibited the development of a framework for diagnostic support. In addition, phonetic variability across languages poses practical challenges in establishing a universal speech assessment system. Therefore, it is necessary to develop models robust to the phonetic variability present in different languages worldwide. We propose a method based on Gaussian mixture models to assess domain adaptation from models trained in German and Spanish to classify PD and ET patients in Czech. We modeled three different speech dimensions: articulation, phonation, and prosody and evaluated the models' performance in both bi-class and tri-class classification scenarios (with the addition of healthy controls). Our results show that a fusion of the three speech dimensions achieved optimal results in binary classification, with accuracies up to 81.4 and 86.2% for monologue and /pa-ta-ka/ tasks, respectively. In tri-class scenarios, incorporating healthy speech signals resulted in accuracies of 63.3 and 71.6% for monologue and /pa-ta-ka/ tasks, respectively. Our findings suggest that automated speech analysis, combined with machine learning is robust, accurate, and can be adapted to different languages to distinguish between PD and ET patients.
- Publikační typ
- časopisecké články MeSH