Most cited article - PubMed ID 30204464
Relationship between dynamic expiratory time constant tau(edyn) and parameters of breathing cycle in pressure support ventilation mode
The main goal of our prospective randomized study was comparing compare the effectiveness of ventilation control method "Automatic proportional minute ventilation (APMV) "versus manually set pressure control ventilation modes in relationship to lung mechanics and gas exchange. 80 patients undergoing coronary artery bypass grafting (CABG) were randomized into 2 groups. 40 patients in the first group No.1 (APMV group) were ventilated with pressure control (PCV) or pressure support ventilation (PSV) mode with APMV control. The other 40 patients (control group No.2) were ventilated with synchronized intermittent mandatory ventilation (SIMV-p) or pressure control modes (PCV) without APMV. Ventilation control with APMV was able to maintain minute ventilation more precisely in comparison with manual control (p<0.01), similarly deviations of ETCO(2) were significantly lower (p<0.01). The number of manual corrections of ventilation settings was significantly lower when APMV was used (p<0.01). The differences in lung mechanics and hemodynamics were not statistically significant. Ventilation using APMV is more precise in maintaining minute ventilation and gas exchange compared with manual settings. It required less staff intervention, while respiratory system mechanics and hemodynamics are comparable. APMV showed as effective and safe method applicable on top of all pressure control ventilation modes.
- MeSH
- Hemodynamics physiology MeSH
- Coronary Artery Bypass methods MeSH
- Middle Aged MeSH
- Humans MeSH
- Respiratory Mechanics physiology MeSH
- Prospective Studies MeSH
- Aged MeSH
- Respiration, Artificial methods MeSH
- Positive-Pressure Respiration methods MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH