Nejvíce citovaný článek - PubMed ID 30226595
Distinct phenotypes and 'bystander' effects of senescent tumour cells induced by docetaxel or immunomodulatory cytokines
Cellular senescence has recently been recognized as a significant contributor to the poor prognosis of glioblastoma, one of the most aggressive brain tumors. Consequently, effectively eliminating senescent glioblastoma cells could benefit patients. Human ADP/ATP translocases (ANTs) play a role in oxidative phosphorylation in both normal and tumor cells. Previous research has shown that the sensitivity of senescent cells to mitochondria-targeted senolytics depends on the level of ANT2. Here, we systematically mapped the transcript and protein levels of ANT isoforms in various types of senescence and glioblastoma tumorigenesis. We employed bioinformatics analysis, targeted mass spectrometry, RT-PCR, immunoblotting, and assessment of cellular energy state to elucidate how individual ANT isoforms are expressed during the development of senescence in noncancerous and glioblastoma cells. We observed a consistent elevation of ANT1 protein levels across all tested senescence types, while ANT2 and ANT3 exhibited variable changes. Alterations in ANT protein isoform levels correlated with shifts in the cellular oxygen consumption rate. Our findings suggest that ANT isoforms are mutually interchangeable for oxidative phosphorylation and manipulating individual ANT isoforms could have potential for senolytic therapy.
- Klíčová slova
- ADP/ATP translocase, cellular senescence, glioblastoma, targeted mass spectrometry,
- MeSH
- glioblastom * patologie genetika metabolismus enzymologie MeSH
- izoenzymy metabolismus genetika MeSH
- lidé MeSH
- mitochondriální ADP/ATP-translokasy * metabolismus genetika MeSH
- nádorové buněčné linie MeSH
- nádory mozku * patologie genetika enzymologie metabolismus MeSH
- oxidativní fosforylace MeSH
- protein - isoformy metabolismus genetika MeSH
- stárnutí buněk * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- izoenzymy MeSH
- mitochondriální ADP/ATP-translokasy * MeSH
- protein - isoformy MeSH
Signal transducer and activator of transcription 3 (STAT3) signalling serves an important role in carcinogenesis and cellular senescence, and its inhibition in tumour cells represents an attractive therapeutic target. Premature cellular senescence, a process of permanent proliferative arrest of cells in response to various inducers, such as cytostatic drugs or ionizing radiation, is accompanied by morphological and secretory changes, and by altered susceptibility to chemotherapeutic agents, which can thereby complicate their eradication by cancer therapies. In the present study, the responsiveness of proliferating and docetaxel (DTX)‑induced senescent cancer cells to small molecule STAT3 inhibitor Stattic and its analogues was evaluated using tumour cell lines. These agents displayed cytotoxic effects in cell viability assays on both proliferating and senescent murine TRAMP‑C2 and TC‑1 cells; however, senescent cells were markedly more resistant. Western blot analysis revealed that Stattic and its analogues effectively inhibited constitutive STAT3 phosphorylation in both proliferating and senescent cells. Furthermore, whether the Stattic‑derived inhibitor K1836 could affect senescence induction or modulate the phenotype of senescent cells was evaluated. K1836 treatment demonstrated no effect on senescence induction by DTX. However, the K1836 compound significantly modulated secretion of certain cytokines (interleukin‑6, growth‑regulated oncogene α and monocyte chemoattractant protein‑1). In summary, the present study demonstrated differences between proliferating and senescent tumour cells in terms of their susceptibility to STAT3 inhibitors and demonstrated the ability of the new STAT3 inhibitor K1836 to affect the secretion of essential components of the senescence‑associated secretory phenotype. The present study may be useful for further development of STAT3 inhibitor‑based therapy of cancer or age‑related diseases.
- Klíčová slova
- Stattic, cellular senescence, docetaxel, senescence‑associated secretory phenotype, signal transducer and activator of transcription 3 inhibition,
- MeSH
- cytokiny * metabolismus MeSH
- docetaxel farmakologie MeSH
- exprese genu MeSH
- fosforylace MeSH
- myši MeSH
- stárnutí buněk MeSH
- transkripční faktor STAT3 * metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokiny * MeSH
- docetaxel MeSH
- stattic MeSH Prohlížeč
- transkripční faktor STAT3 * MeSH
To date, the most studied drug in anti-aging research is the mTOR inhibitor - rapamycin. Despite its almost perfect anti-aging profile, rapamycin exerts one significant limitation - inappropriate physicochemical properties. Therefore, we have decided to utilize virtual high-throughput screening and fragment-based design in search of novel mTOR inhibiting scaffolds with suitable physicochemical parameters. Seven lead compounds were selected from the list of obtained hits that were commercially available (4, 5, and 7) or their synthesis was feasible (1, 2, 3, and 6) and evaluated in vitro and subsequently in vivo. Of all these substances, only compound 3 demonstrated a significant cytotoxic, senolytic, and senomorphic effect on normal and cancerous cells. Further, it has been confirmed that compound 3 is a direct mTORC1 inhibitor. Last but not least, compound 3 was found to exhibit anti-SASP activity concurrently being relatively safe within the test of in vivo tolerability. All these outstanding results highlight compound 3 as a scaffold worthy of further investigation.
- Klíčová slova
- SASP phenotype, aging, anti-aging therapy, cancer, mTOR,
- Publikační typ
- časopisecké články MeSH
Accumulation of senescent cells in tissues with advancing age participates in the pathogenesis of several human age-associated diseases. Specific senescent secretome, the resistance of senescent cells to apoptotic stimuli, and lack of immune system response contribute to the accumulation of senescent cells and their adverse effects in tissues. Inhibition of antiapoptotic machinery, augmented in senescent cells, by BCL-2 protein family inhibitors represents a promising approach to eliminate senescent cells from tissues. This study aimed to explore synergistic and selective senolytic effects of anti-apoptotic BCL-2 family targeting compounds, particularly BH3 mimetics. Using human non-transformed cells RPE-1, BJ, and MRC-5 brought to ionizing radiation-, oncogene-, drug-induced and replicative senescence, we found synergy in combining MCL-1 selective inhibitors with other BH3 mimetics. In an attempt to uncover the mechanism of such synergy, we revealed that the surviving subpopulation of cells resistant to individually applied ABT-737/ABT-263, MIK665, ABT-199, and S63845 BCL-2 family inhibitors showed elevated MCL-1 compared to untreated control cells indicating the presence of a subset of cells expressing high MCL-1 levels and, therefore, resistant to BCL-2 inhibitors within the original population of senescent cells. Overall, we found that combining BCL-2 inhibitors can be beneficial for eliminating senescent cells, thereby enabling use of lower, potentially less toxic, doses of drugs compared to monotherapy, thereby overcoming the resistance of the subpopulation of senescent cells to monotherapy.
- Klíčová slova
- BCL-2, MCL-1, cellular senescence, homoharringtonine, senolytics,
- MeSH
- apoptóza MeSH
- lidé MeSH
- protein MCL-1 metabolismus MeSH
- protoonkogenní proteiny c-bcl-2 * antagonisté a inhibitory MeSH
- stárnutí buněk * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protein MCL-1 MeSH
- protoonkogenní proteiny c-bcl-2 * MeSH