Nejvíce citovaný článek - PubMed ID 30250863
Physiological and pathological high frequency oscillations in focal epilepsy
Recently, in the past decade, high-frequency oscillations (HFOs), very high-frequency oscillations (VHFOs), and ultra-fast oscillations (UFOs) were reported in epileptic patients with drug-resistant epilepsy. However, to this day, the physiological origin of these events has yet to be understood. Our study establishes a mathematical framework based on bifurcation theory for investigating the occurrence of VHFOs and UFOs in depth EEG signals of patients with focal epilepsy, focusing on the potential role of reduced connection strength between neurons in an epileptic focus. We demonstrate that synchronization of a weakly coupled network can generate very and ultra high-frequency signals detectable by nearby microelectrodes. In particular, we show that a bistability region enables the persistence of phase-shift synchronized clusters of neurons. This phenomenon is observed for different hippocampal neuron models, including Morris-Lecar, Destexhe-Paré, and an interneuron model. The mechanism seems to be robust for small coupling, and it also persists with random noise affecting the external current. Our findings suggest that weakened neuronal connections could contribute to the production of oscillations with frequencies above 1000 Hz, which could advance our understanding of epilepsy pathology and potentially improve treatment strategies. However, further exploration of various coupling types and complex network models is needed.
We have built a mathematical framework to examine how a reduced neuronal coupling within an epileptic focus could lead to very high-frequency (VHFOs) and ultra-fast oscillations (UFOs) in depth EEG signals. By analyzing weakly coupled neurons, we found a bistability synchronization region where in-phase and anti-phase synchrony persist. These dynamics can be detected as very high-frequency EEG signals. The principle of weak coupling aligns with the disturbances in neuronal connections often observed in epilepsy; moreover, VHFOs are important markers of epileptogenicity. Our findings point to the potential significance of weakened neuronal connections in producing VHFOs and UFOs related to focal epilepsy. This could enhance our understanding of brain disorders. We emphasize the need for further investigations of weakly coupled neurons.
- Klíčová slova
- Bifurcations, Epilepsy, Neuronal network model, Phase-shift synchrony, Ultra-fast oscillations, Very high-frequency oscillations,
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: Verbal memory dysfunction is common in focal, drug-resistant epilepsy (DRE). Unfortunately, surgical removal of seizure-generating brain tissue can be associated with further memory decline. Therefore, localization of both the circuits generating seizures and those underlying cognitive functions is critical in presurgical evaluations for patients who may be candidates for resective surgery. We used intracranial electroencephalographic (iEEG) recordings during a verbal memory task to investigate word encoding in focal epilepsy. We hypothesized that engagement in a memory task would exaggerate local iEEG feature differences between the seizure onset zone (SOZ) and neighboring tissue as compared to wakeful rest ("nontask"). METHODS: Ten participants undergoing presurgical iEEG evaluation for DRE performed a free recall verbal memory task. We evaluated three iEEG features in SOZ and non-SOZ electrodes during successful word encoding and compared them with nontask recordings: interictal epileptiform spike (IES) rates, power in band (PIB), and relative entropy (REN; a functional connectivity measure). RESULTS: We found a complex pattern of PIB and REN changes in SOZ and non-SOZ electrodes during successful word encoding compared to nontask. Successful word encoding was associated with a reduction in local electrographic functional connectivity (increased REN), which was most exaggerated in temporal lobe SOZ. The IES rates were reduced during task, but only in the non-SOZ electrodes. Compared with nontask, REN features during task yielded marginal improvements in SOZ classification. SIGNIFICANCE: Previous studies have supported REN as a biomarker for epileptic brain. We show that REN differences between SOZ and non-SOZ are enhanced during a verbal memory task. We also show that IESs are reduced during task in non-SOZ, but not in SOZ. These findings support the hypothesis that SOZ and non-SOZ respond differently to task and warrant further exploration into the use of cognitive tasks to identify functioning memory circuits and localize SOZ.
- Klíčová slova
- cognitive task, epilepsy, functional connectivity, seizure onset zone, spikes,
- MeSH
- elektroencefalografie MeSH
- elektrokortikografie MeSH
- epilepsie parciální * chirurgie MeSH
- lidé MeSH
- mozek MeSH
- refrakterní epilepsie * chirurgie MeSH
- záchvaty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The electrophysiological EEG features such as high frequency oscillations, spikes and functional connectivity are often used for delineation of epileptogenic tissue and study of the normal function of the brain. The epileptogenic activity is also known to be suppressed by cognitive processing. However, differences between epileptic and healthy brain behavior during rest and task were not studied in detail. In this study we investigate the impact of cognitive processing on epileptogenic and non-epileptogenic hippocampus and the intracranial EEG features representing the underlying electrophysiological processes. We investigated intracranial EEG in 24 epileptic and 24 non-epileptic hippocampi in patients with intractable focal epilepsy during a resting state period and during performance of various cognitive tasks. We evaluated the behavior of features derived from high frequency oscillations, interictal epileptiform discharges and functional connectivity and their changes in relation to cognitive processing. Subsequently, we performed an analysis whether cognitive processing can contribute to classification of epileptic and non-epileptic hippocampus using a machine learning approach. The results show that cognitive processing suppresses epileptogenic activity in epileptic hippocampus while it causes a shift toward higher frequencies in non-epileptic hippocampus. Statistical analysis reveals significantly different electrophysiological reactions of epileptic and non-epileptic hippocampus during cognitive processing, which can be measured by high frequency oscillations, interictal epileptiform discharges and functional connectivity. The calculated features showed high classification potential for epileptic hippocampus (AUC = 0.93). In conclusion, the differences between epileptic and non-epileptic hippocampus during cognitive processing bring new insight in delineation between pathological and physiological processes. Analysis of computed iEEG features in rest and task condition can improve the functional mapping during pre-surgical evaluation and provide additional guidance for distinguishing between epileptic and non-epileptic structure which is absolutely crucial for achieving the best possible outcome with as little side effects as possible.
- Klíčová slova
- cognitive processing, functional connectivity, high frequency oscillation (HFO), hippocampus, interictal epileptiform discharge, pharmacoresistant epilepsy,
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: When considering all patients with focal drug-resistant epilepsy, as high as 40-50% of patients suffer seizure recurrence after surgery. To achieve seizure freedom without side effects, accurate localization of the epileptogenic tissue is crucial before its resection. We investigate an automated, fast, objective mapping process that uses only interictal data. METHODS: We propose a novel approach based on multiple iEEG features, which are used to train a support vector machine (SVM) model for classification of iEEG electrodes as normal or pathologic using 30 min of inter-ictal recording. RESULTS: The tissue under the iEEG electrodes, classified as epileptogenic, was removed in 17/18 excellent outcome patients and was not entirely resected in 8/10 poor outcome patients. The overall best result was achieved in a subset of 9 excellent outcome patients with the area under the receiver operating curve = 0.95. CONCLUSION: SVM models combining multiple iEEG features show better performance than algorithms using a single iEEG marker. Multiple iEEG and connectivity features in presurgical evaluation could improve epileptogenic tissue localization, which may improve surgical outcome and minimize risk of side effects. SIGNIFICANCE: In this study, promising results were achieved in localization of epileptogenic regions by SVM models that combine multiple features from 30 min of inter-ictal iEEG recordings.
- Klíčová slova
- Connectivity, Drug resistant epilepsy, Epileptogenic zone localization, High frequency oscillations, Machine learning, Multi-feature approach,
- MeSH
- dospělí MeSH
- elektroencefalografie přístrojové vybavení metody MeSH
- epilepsie parciální diagnóza patofyziologie MeSH
- implantované elektrody MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- retrospektivní studie MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH