Most cited article - PubMed ID 30703114
Dual role of iodine, silver, chlorhexidine and octenidine as antimicrobial and antiprotease agents
Cellular processes such as tissue regeneration, inflammation, and migration require the proteolysis of the extracellular matrix and the proteolytic activation of signaling molecules. A widely used and accessible technique for studying these processes is gelatin zymography, particularly for investigating matrix metalloproteinases (MMPs), though it is not limited to them. This method is favored for its simplicity, low cost, and robustness. Despite certain limitations, it remains a preferred approach for the initial investigation of complex samples.Here, we present a protocol applicable to various sample sources, including proteases from human cell lines and bacteria isolated from chronic wounds. We also explore changes in protease activity within exudates from human chronic wounds, a challenging analysis for more complex techniques. Additionally, we emphasize the potential to extend the basic protocol to study the conditions under which proteases are active.
- Keywords
- Bacterial protease, Chronic wound, Exudate, Gelatin zymography, MMPs, Protease,
- MeSH
- Chronic Disease MeSH
- Electrophoresis MeSH
- Enzyme Assays * methods MeSH
- Humans MeSH
- Matrix Metalloproteinases * metabolism MeSH
- Wounds and Injuries * enzymology MeSH
- Gelatin * metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Matrix Metalloproteinases * MeSH
- Gelatin * MeSH
Hard-to-heal wounds do not heal spontaneously and need long-term care provided by specialists. That burdens the patients as well as the healthcare systems. Such wounds arise from several pathologies, which result in venous leg ulcers (VLU), diabetic foot ulcers (DFU), pressure ulcers (PU), or ulcers originating from post-surgical wounds (pSW). Given the complex nature of hard-to-heal wounds, novel treatments are sought to enable wound healing. We tested the clinical efficacy and applicability of fluid comprising hyaluronic acid and iodine complex (HA-I) in the treatment of hard-to-heal wounds. Patients (n = 56) with VLU, DFU, PU, or pSW hospitalised in multiple wound-care centres in the Czech Republic were treated with HA-I. Wound size, classically visible signs of infection, exudation, pain, and wound bed appearance were monitored for 12 weeks. The highest healing rate was in DFU (71.4%), followed by pSW (62.5%), VLU (55.6%), and PU (44.4%). Classical visible signs of infection were resolved within 8 weeks in all types of wounds. Wound bed appearance improved most noticeably in pSW and then in VLU. Exudation was lowered most significantly in DFU and pSW. The highest decrease in pain was in pSW and DFU. The treatment with HA-I successfully led to either complete closure or significant improvement in the wound's healing. Therefore, the complex of hyaluronic acid and iodine is suitable for the treatment of hard-to-heal wounds of various aetiologies.
- Keywords
- chronic wounds, hyaluronic acid, iodine, treatment, ulcer,
- Publication type
- Journal Article MeSH