Nejvíce citovaný článek - PubMed ID 31009828
PML nuclear bodies are recruited to persistent DNA damage lesions in an RNF168-53BP1 dependent manner and contribute to DNA repair
PML, a multifunctional protein, is crucial for forming PML-nuclear bodies involved in stress responses. Under specific conditions, PML associates with nucleolar caps formed after RNA polymerase I (RNAPI) inhibition, leading to PML-nucleolar associations (PNAs). This study investigates PNAs-inducing stimuli by exposing cells to various genotoxic stresses. We found that the most potent inducers of PNAs introduced topological stress and inhibited RNAPI. Doxorubicin, the most effective compound, induced double-strand breaks (DSBs) in the rDNA locus. PNAs co-localized with damaged rDNA, segregating it from active nucleoli. Cleaving the rDNA locus with I-PpoI confirmed rDNA damage as a genuine stimulus for PNAs. Inhibition of ATM, ATR kinases, and RAD51 reduced I-PpoI-induced PNAs, highlighting the importance of ATM/ATR-dependent nucleolar cap formation and homologous recombination (HR) in their triggering. I-PpoI-induced PNAs co-localized with rDNA DSBs positive for RPA32-pS33 but deficient in RAD51, indicating resected DNA unable to complete HR repair. Our findings suggest that PNAs form in response to persistent rDNA damage within the nucleolar cap, highlighting the interplay between PML/PNAs and rDNA alterations due to topological stress, RNAPI inhibition, and rDNA DSBs destined for HR. Cells with persistent PNAs undergo senescence, suggesting PNAs help avoid rDNA instability, with implications for tumorigenesis and aging.
- Klíčová slova
- PML, aberrant DNA topology, cancer biology, cell biology, cellular senescence, genome maintenance, human, persistent rDNA damage,
- MeSH
- buněčné jadérko * metabolismus MeSH
- dvouřetězcové zlomy DNA MeSH
- lidé MeSH
- poškození DNA MeSH
- protein promyelocytické leukemie * metabolismus genetika MeSH
- ribozomální DNA * genetika metabolismus MeSH
- RNA-polymerasa I metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- PML protein, human MeSH Prohlížeč
- protein promyelocytické leukemie * MeSH
- ribozomální DNA * MeSH
- RNA-polymerasa I MeSH
Accumulation of senescent cells in tissues with advancing age participates in the pathogenesis of several human age-associated diseases. Specific senescent secretome, the resistance of senescent cells to apoptotic stimuli, and lack of immune system response contribute to the accumulation of senescent cells and their adverse effects in tissues. Inhibition of antiapoptotic machinery, augmented in senescent cells, by BCL-2 protein family inhibitors represents a promising approach to eliminate senescent cells from tissues. This study aimed to explore synergistic and selective senolytic effects of anti-apoptotic BCL-2 family targeting compounds, particularly BH3 mimetics. Using human non-transformed cells RPE-1, BJ, and MRC-5 brought to ionizing radiation-, oncogene-, drug-induced and replicative senescence, we found synergy in combining MCL-1 selective inhibitors with other BH3 mimetics. In an attempt to uncover the mechanism of such synergy, we revealed that the surviving subpopulation of cells resistant to individually applied ABT-737/ABT-263, MIK665, ABT-199, and S63845 BCL-2 family inhibitors showed elevated MCL-1 compared to untreated control cells indicating the presence of a subset of cells expressing high MCL-1 levels and, therefore, resistant to BCL-2 inhibitors within the original population of senescent cells. Overall, we found that combining BCL-2 inhibitors can be beneficial for eliminating senescent cells, thereby enabling use of lower, potentially less toxic, doses of drugs compared to monotherapy, thereby overcoming the resistance of the subpopulation of senescent cells to monotherapy.
- Klíčová slova
- BCL-2, MCL-1, cellular senescence, homoharringtonine, senolytics,
- MeSH
- apoptóza MeSH
- lidé MeSH
- protein MCL-1 metabolismus MeSH
- protoonkogenní proteiny c-bcl-2 * antagonisté a inhibitory MeSH
- stárnutí buněk * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protein MCL-1 MeSH
- protoonkogenní proteiny c-bcl-2 * MeSH
Cellular senescence is a complex stress response defined as an essentially irreversible cell cycle arrest mediated by the inhibition of cell cycle-specific cyclin dependent kinases. The imbalance in redox homeostasis and oxidative stress have been repeatedly observed as one of the hallmarks of the senescent phenotype. However, a large-scale study investigating protein oxidation and redox signaling in senescent cells in vitro has been lacking. Here we applied a proteome-wide analysis using SILAC-iodoTMT workflow to quantitatively estimate the level of protein sulfhydryl oxidation and proteome level changes in ionizing radiation-induced senescence (IRIS) in hTERT-RPE-1 cells. We observed that senescent cells mobilized the antioxidant system to buffer the increased oxidation stress. Among the antioxidant proteins with increased relative abundance in IRIS, a unique 1-Cys peroxiredoxin family member, peroxiredoxin 6 (PRDX6), was identified as an important contributor to protection against oxidative stress. PRDX6 silencing increased ROS production in senescent cells, decreased their resistance to oxidative stress-induced cell death, and impaired their viability. Subsequent SILAC-iodoTMT and secretome analysis after PRDX6 silencing showed the downregulation of PRDX6 in IRIS affected protein secretory pathways, decreased expression of extracellular matrix proteins, and led to unexpected attenuation of senescence-associated secretory phenotype (SASP). The latter was exemplified by decreased secretion of pro-inflammatory cytokine IL-6 which was also confirmed after treatment with an inhibitor of PRDX6 iPLA2 activity, MJ33. In conclusion, by combining different methodological approaches we discovered a novel role of PRDX6 in senescent cell viability and SASP development. Our results suggest PRDX6 could have a potential as a drug target for senolytic or senomodulatory therapy.
- Klíčová slova
- Cellular senescence, Interleukin 6, Peroxiredoxin 6, Redox proteomics, SILAC-iodoTMT, Senescence-associated secretory phenotype,
- MeSH
- cytokiny * metabolismus MeSH
- oxidace-redukce MeSH
- oxidační stres MeSH
- peroxiredoxin VI * genetika metabolismus MeSH
- stárnutí buněk fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny * MeSH
- peroxiredoxin VI * MeSH
Diverse stress insults trigger interactions of PML with nucleolus, however, the function of these PML nucleolar associations (PNAs) remains unclear. Here we show that during induction of DNA damage-induced senescence in human non-cancerous cells, PML accumulates at the nucleolar periphery simultaneously with inactivation of RNA polymerase I (RNAP I) and nucleolar segregation. Using time-lapse and high-resolution microscopy, we followed the genesis, structural transitions and destiny of PNAs to show that: 1) the dynamic structural changes of the PML-nucleolar interaction are tightly associated with inactivation and reactivation of RNAP I-mediated transcription, respectively; 2) the PML-nucleolar compartment develops sequentially under stress and, upon stress termination, it culminates in either of two fates: disappearance or persistence; 3) all PNAs stages can associate with DNA damage markers; 4) the persistent, commonly long-lasting PML multi-protein nucleolar structures (PML-NDS) associate with markers of DNA damage, indicating a role of PNAs in persistent DNA damage response characteristic for senescent cells. Given the emerging evidence implicating PML in homologous recombination-directed DNA repair, we propose that PNAs contribute to sequestration and faithful repair of the highly unstable ribosomal DNA repeats, a fundamental process to maintain a precise balance between DNA repair mechanisms, with implications for genomic integrity and aging.
- Klíčová slova
- DNA damage, nucleolar segregation, rDNA loci, super-resolution microscopy, time-lapse imaging,
- MeSH
- buněčné jadérko metabolismus MeSH
- doxorubicin MeSH
- fyziologický stres MeSH
- kultivované buňky MeSH
- lidé MeSH
- poškození DNA * MeSH
- protein promyelocytické leukemie metabolismus MeSH
- stárnutí buněk * MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- doxorubicin MeSH
- PML protein, human MeSH Prohlížeč
- protein promyelocytické leukemie MeSH