• This record comes from PubMed

Topological stress triggers persistent DNA lesions in ribosomal DNA with ensuing formation of PML-nucleolar compartment

. 2024 Oct 10 ; 12 () : . [epub] 20241010

Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
19-21325S Grant Agency of the Czech Republic
23- 07273S Grant Agency of the Czech Republic
68378050 Institutional Grant Project RVO
LX22NPO5102 National Institute for Cancer Research; Programme EXCELES,
R322-A17482 Danish Cancer Society
1026-00241B Danish Council for Independent Research
NNF20OC0060590 Novo Nordisk Foundation

PML, a multifunctional protein, is crucial for forming PML-nuclear bodies involved in stress responses. Under specific conditions, PML associates with nucleolar caps formed after RNA polymerase I (RNAPI) inhibition, leading to PML-nucleolar associations (PNAs). This study investigates PNAs-inducing stimuli by exposing cells to various genotoxic stresses. We found that the most potent inducers of PNAs introduced topological stress and inhibited RNAPI. Doxorubicin, the most effective compound, induced double-strand breaks (DSBs) in the rDNA locus. PNAs co-localized with damaged rDNA, segregating it from active nucleoli. Cleaving the rDNA locus with I-PpoI confirmed rDNA damage as a genuine stimulus for PNAs. Inhibition of ATM, ATR kinases, and RAD51 reduced I-PpoI-induced PNAs, highlighting the importance of ATM/ATR-dependent nucleolar cap formation and homologous recombination (HR) in their triggering. I-PpoI-induced PNAs co-localized with rDNA DSBs positive for RPA32-pS33 but deficient in RAD51, indicating resected DNA unable to complete HR repair. Our findings suggest that PNAs form in response to persistent rDNA damage within the nucleolar cap, highlighting the interplay between PML/PNAs and rDNA alterations due to topological stress, RNAPI inhibition, and rDNA DSBs destined for HR. Cells with persistent PNAs undergo senescence, suggesting PNAs help avoid rDNA instability, with implications for tumorigenesis and aging.

Update Of

doi: 10.1101/2023.08.05.552131 PubMed

Update Of

doi: 10.7554/eLife.91304.1 PubMed

Update Of

doi: 10.7554/eLife.91304.2 PubMed

See more in PubMed

Alagpulinsa DA, Ayyadevara S, Shmookler Reis RJ. A Small-molecule inhibitor of RAD51 reduces homologous recombination and sensitizes multiple myeloma cells to doxorubicin. Frontiers in Oncology. 2014;4:289. doi: 10.3389/fonc.2014.00289. PubMed DOI PMC

Arnaudeau C, Lundin C, Helleday T. DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. Journal of Molecular Biology. 2001;307:1235–1245. doi: 10.1006/jmbi.2001.4564. PubMed DOI

Attwood KM, Salsman J, Chung D, Mathavarajah S, Van Iderstine C, Dellaire G. PML isoform expression and DNA break location relative to PML nuclear bodies impacts the efficiency of homologous recombination. Biochemistry and Cell Biology = Biochimie et Biologie Cellulaire. 2020;98:314–326. doi: 10.1139/bcb-2019-0115. PubMed DOI

Atwal M, Swan RL, Rowe C, Lee KC, Lee DC, Armstrong L, Cowell IG, Austin CA. Intercalating TOP2 poisons attenuate topoisomerase action at higher concentrations. Molecular Pharmacology. 2019;96:475–484. doi: 10.1124/mol.119.117259. PubMed DOI PMC

Banaszynski LA, Chen LC, Maynard-Smith LA, Ooi AGL, Wandless TJ. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell. 2006;126:995–1004. doi: 10.1016/j.cell.2006.07.025. PubMed DOI PMC

Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LVF, Kolettas E, Niforou K, Zoumpourlis VC, Takaoka M, Nakagawa H, Tort F, Fugger K, Johansson F, Sehested M, Andersen CL, Dyrskjot L, Ørntoft T, Lukas J, Kittas C, Helleday T, Halazonetis TD, Bartek J, Gorgoulis VG. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444:633–637. doi: 10.1038/nature05268. PubMed DOI

Berkovich E, Monnat RJ, Kastan MB. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nature Cell Biology. 2007;9:683–690. doi: 10.1038/ncb1599. PubMed DOI

Berlin V, Haseltine WA. Reduction of adriamycin to a semiquinone-free radical by NADPH cytochrome P-450 reductase produces DNA cleavage in a reaction mediated by molecular oxygen. The Journal of Biological Chemistry. 1981;256:4747–4756. PubMed

Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP. PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nature Cell Biology. 2004;6:665–672. doi: 10.1038/ncb1147. PubMed DOI

Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nature Reviews. Molecular Cell Biology. 2007;8:1006–1016. doi: 10.1038/nrm2277. PubMed DOI

Boichuk S, Hu L, Makielski K, Pandolfi PP, Gjoerup OV. Functional connection between Rad51 and PML in homology-directed repair. PLOS ONE. 2011;6:e25814. doi: 10.1371/journal.pone.0025814. PubMed DOI PMC

Borrow J, Goddard AD, Sheer D, Solomon E. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science. 1990;249:1577–1580. doi: 10.1126/science.2218500. PubMed DOI

Bruno PM, Liu Y, Park GY, Murai J, Koch CE, Eisen TJ, Pritchard JR, Pommier Y, Lippard SJ, Hemann MT. A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nature Medicine. 2017;23:461–471. doi: 10.1038/nm.4291. PubMed DOI PMC

Burger K, Mühl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M, Kellner M, Gruber-Eber A, Kremmer E, Hölzel M, Eick D. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. The Journal of Biological Chemistry. 2010;285:12416–12425. doi: 10.1074/jbc.M109.074211. PubMed DOI PMC

Canela A, Maman Y, Huang SYN, Wutz G, Tang W, Zagnoli-Vieira G, Callen E, Wong N, Day A, Peters JM, Caldecott KW, Pommier Y, Nussenzweig A. Topoisomerase ii-induced chromosome breakage and translocation is determined by chromosome architecture and transcriptional activity. Molecular Cell. 2019;75:252–266. doi: 10.1016/j.molcel.2019.04.030. PubMed DOI PMC

Carvalho CMB, Lupski JR. Mechanisms underlying structural variant formation in genomic disorders. Nature Reviews. Genetics. 2016;17:224–238. doi: 10.1038/nrg.2015.25. PubMed DOI PMC

Chen H, Liu X, Patel DJ. DNA bending and unwinding associated with actinomycin D antibiotics bound to partially overlapping sites on DNA. Journal of Molecular Biology. 1996;258:457–479. doi: 10.1006/jmbi.1996.0262. PubMed DOI

Chung I, Leonhardt H, Rippe K. De novo assembly of a PML nuclear subcompartment occurs through multiple pathways and induces telomere elongation. Journal of Cell Science. 2011;124:3603–3618. doi: 10.1242/jcs.084681. PubMed DOI

Colis L, Peltonen K, Sirajuddin P, Liu H, Sanders S, Ernst G, Barrow JC, Laiho M. DNA intercalator BMH-21 inhibits RNA polymerase I independent of DNA damage response. Oncotarget. 2014;5:4361–4369. doi: 10.18632/oncotarget.2020. PubMed DOI PMC

Condemine W, Takahashi Y, Le Bras M, de Thé H. A nucleolar targeting signal in PML-I addresses PML to nucleolar caps in stressed or senescent cells. Journal of Cell Science. 2007;120:3219–3227. doi: 10.1242/jcs.007492. PubMed DOI

Corpet A, Kleijwegt C, Roubille S, Juillard F, Jacquet K, Texier P, Lomonte P. PML nuclear bodies and chromatin dynamics: catch me if you can! Nucleic Acids Research. 2020;48:11890–11912. doi: 10.1093/nar/gkaa828. PubMed DOI PMC

Cortes Ledesma F, El Khamisy SF, Zuma MC, Osborn K, Caldecott KW. A human 5’-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature. 2009;461:674–678. doi: 10.1038/nature08444. PubMed DOI

d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426:194–198. doi: 10.1038/nature02118. PubMed DOI

Datta N, Chakraborty S, Basu M, Ghosh MK. Tumor suppressors having oncogenic functions: the double agents. Cells. 2020;10:46. doi: 10.3390/cells10010046. PubMed DOI PMC

de Thé H, Chomienne C, Lanotte M, Degos L, Dejean A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature. 1990;347:558–561. doi: 10.1038/347558a0. PubMed DOI

Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. PNAS. 1995;92:9363–9367. doi: 10.1073/pnas.92.20.9363. PubMed DOI PMC

Espinoza JA, Kanellis DC, Saproo S, Leal K, Martinez JF, Bartek J, Lindström MS. Chromatin damage generated by DNA intercalators leads to degradation of RNA Polymerase II. Nucleic Acids Research. 2024;52:4151–4166. doi: 10.1093/nar/gkae069. PubMed DOI PMC

Floutsakou I, Agrawal S, Nguyen TT, Seoighe C, Ganley ARD, McStay B. The shared genomic architecture of human nucleolar organizer regions. Genome Research. 2013;23:2003–2012. doi: 10.1101/gr.157941.113. PubMed DOI PMC

Frank NE, Cusack BJ, Talley TT, Walsh GM, Olson RD. Comparative effects of doxorubicin and a doxorubicin analog, 13-deoxy, 5-iminodoxorubicin (GPX-150), on human topoisomerase IIβ activity and cardiac function in a chronic rabbit model. Investigational New Drugs. 2016;34:693–700. doi: 10.1007/s10637-016-0388-x. PubMed DOI

Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM, Herbig U, Longhese MP, d’Adda di Fagagna F. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nature Cell Biology. 2012;14:355–365. doi: 10.1038/ncb2466. PubMed DOI PMC

Gajewski E, Gaur S, Akman SA, Matsumoto L, van Balgooy JNA, Doroshow JH. Oxidative DNA base damage in MCF-10A breast epithelial cells at clinically achievable concentrations of doxorubicin. Biochemical Pharmacology. 2007;73:1947–1956. doi: 10.1016/j.bcp.2007.03.022. PubMed DOI PMC

Golding SE, Rosenberg E, Valerie N, Hussaini I, Frigerio M, Cockcroft XF, Chong WY, Hummersone M, Rigoreau L, Menear KA, O’Connor MJ, Povirk LF, van Meter T, Valerie K. Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Molecular Cancer Therapeutics. 2009;8:2894–2902. doi: 10.1158/1535-7163.MCT-09-0519. PubMed DOI PMC

Gonzalez IL, Sylvester JE. Complete sequence of the 43-kb human ribosomal DNA repeat: analysis of the intergenic spacer. Genomics. 1995;27:320–328. doi: 10.1006/geno.1995.1049. PubMed DOI

Grawunder U, Zimmer D, Fugmann S, Schwarz K, Lieber MR. DNA ligase IV is essential for V(D)J recombination and DNA double-strand break repair in human precursor lymphocytes. Molecular Cell. 1998;2:477–484. doi: 10.1016/s1097-2765(00)80147-1. PubMed DOI

Guan D, Kao HY. The function, regulation and therapeutic implications of the tumor suppressor protein, PML. Cell & Bioscience. 2015;5:60. doi: 10.1186/s13578-015-0051-9. PubMed DOI PMC

Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319:1352–1355. doi: 10.1126/science.1140735. PubMed DOI

Harding SM, Boiarsky JA, Greenberg RA. ATM dependent silencing links nucleolar chromatin reorganization to DNA damage recognition. Cell Reports. 2015;13:251–259. doi: 10.1016/j.celrep.2015.08.085. PubMed DOI PMC

Harding SM, Greenberg RA. Choreographing the double strand break response: ubiquitin and sumo control of nuclear architecture. Frontiers in Genetics. 2016;7:103. doi: 10.3389/fgene.2016.00103. PubMed DOI PMC

Hasinoff BB, Wu X, Patel D, Kanagasabai R, Karmahapatra S, Yalowich JC. Mechanisms of action and reduced cardiotoxicity of pixantrone; a topoisomerase II Targeting agent with cellular selectivity for the topoisomerase IIα isoform. The Journal of Pharmacology and Experimental Therapeutics. 2016;356:397–409. doi: 10.1124/jpet.115.228650. PubMed DOI PMC

Henderson AS, Warburton D, Atwood KC. Location of ribosomal DNA in the human chromosome complement. PNAS. 1972;69:3394–3398. doi: 10.1073/pnas.69.11.3394. PubMed DOI PMC

Henson JD, Hannay JA, McCarthy SW, Royds JA, Yeager TR, Robinson RA, Wharton SB, Jellinek DA, Arbuckle SM, Yoo J, Robinson BG, Learoyd DL, Stalley PD, Bonar SF, Yu D, Pollock RE, Reddel RR. A robust assay for alternative lengthening of telomeres in tumors shows the significance of alternative lengthening of telomeres in sarcomas and astrocytomas. Clinical Cancer Research. 2005;11:217–225. PubMed

Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NMB, Orr AI, Reaper PM, Jackson SP, Curtin NJ, Smith GCM. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Research. 2004;64:9152–9159. doi: 10.1158/0008-5472.CAN-04-2727. PubMed DOI

Hornofova T, Pokorna B, Hubackova SS, Uvizl A, Kosla J, Bartek J, Hodny Z, Vasicova P. Phospho-SIM and exon8b of PML protein regulate formation of doxorubicin-induced rDNA-PML compartment. DNA Repair. 2022;114:103319. doi: 10.1016/j.dnarep.2022.103319. PubMed DOI

Huang F, Motlekar NA, Burgwin CM, Napper AD, Diamond SL, Mazin AV. Identification of specific inhibitors of human RAD51 recombinase using high-throughput screening. ACS Chemical Biology. 2011;6:628–635. doi: 10.1021/cb100428c. PubMed DOI PMC

Imrichova T, Hubackova S, Kucerova A, Kosla J, Bartek J, Hodny Z, Vasicova P. Dynamic PML protein nucleolar associations with persistent DNA damage lesions in response to nucleolar stress and senescence-inducing stimuli. Aging. 2019;11:7206–7235. doi: 10.18632/aging.102248. PubMed DOI PMC

Janderová-Rossmeislová L, Nováková Z, Vlasáková J, Philimonenko V, Hozák P, Hodný Z. PML protein association with specific nucleolar structures differs in normal, tumor and senescent human cells. Journal of Structural Biology. 2007;159:56–70. doi: 10.1016/j.jsb.2007.02.008. PubMed DOI

Jensen K, Shiels C, Freemont PS. PML protein isoforms and the RBCC/TRIM motif. Oncogene. 2001;20:7223–7233. doi: 10.1038/sj.onc.1204765. PubMed DOI

Korsholm LM, Gál Z, Lin L, Quevedo O, Ahmad DA, Dulina E, Luo Y, Bartek J, Larsen DH. Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair. Nucleic Acids Research. 2019;47:8019–8035. doi: 10.1093/nar/gkz518. PubMed DOI PMC

Korsholm LM, Gál Z, Nieto B, Quevedo O, Boukoura S, Lund CC, Larsen DH. Recent advances in the nucleolar responses to DNA double-strand breaks. Nucleic Acids Research. 2020;48:9449–9461. doi: 10.1093/nar/gkaa713. PubMed DOI PMC

Leahy JJJ, Golding BT, Griffin RJ, Hardcastle IR, Richardson C, Rigoreau L, Smith GCM. Identification of a highly potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor (NU7441) by screening of chromenone libraries. Bioorganic & Medicinal Chemistry Letters. 2004;14:6083–6087. doi: 10.1016/j.bmcl.2004.09.060. PubMed DOI

Lee JH, Berger JM. Cell cycle-dependent control and roles of DNA topoisomerase II. Genes. 2019;10:859. doi: 10.3390/genes10110859. PubMed DOI PMC

Lin YL, Pasero P. Interference between DNA replication and transcription as a cause of genomic instability. Current Genomics. 2012;13:65–73. doi: 10.2174/138920212799034767. PubMed DOI PMC

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Maede Y, Shimizu H, Fukushima T, Kogame T, Nakamura T, Miki T, Takeda S, Pommier Y, Murai J. Differential and common DNA repair pathways for topoisomerase I- and II-targeted drugs in a genetic DT40 repair cell screen panel. Molecular Cancer Therapeutics. 2014;13:214–220. doi: 10.1158/1535-7163.MCT-13-0551. PubMed DOI PMC

Mais C, Wright JE, Prieto JL, Raggett SL, McStay B. UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes & Development. 2005;19:50–64. doi: 10.1101/gad.310705. PubMed DOI PMC

Mangan H, McStay B. Human nucleoli comprise multiple constrained territories, tethered to individual chromosomes. Genes & Development. 2021;35:483–488. doi: 10.1101/gad.348234.121. PubMed DOI PMC

Marinello J, Chillemi G, Bueno S, Manzo SG, Capranico G. Antisense transcripts enhanced by camptothecin at divergent CpG-island promoters associated with bursts of topoisomerase I-DNA cleavage complex and R-loop formation. Nucleic Acids Research. 2013;41:10110–10123. doi: 10.1093/nar/gkt778. PubMed DOI PMC

Martinez-Pastor B, Silveira GG, Clarke TL, Chung D, Gu Y, Cosentino C, Davidow LS, Mata G, Hassanieh S, Salsman J, Ciccia A, Bae N, Bedford MT, Megias D, Rubin LL, Efeyan A, Dellaire G, Mostoslavsky R. Assessing kinetics and recruitment of DNA repair factors using high content screens. Cell Reports. 2021;37:110176. doi: 10.1016/j.celrep.2021.110176. PubMed DOI PMC

Mattsson K, Pokrovskaja K, Kiss C, Klein G, Szekely L. Proteins associated with the promyelocytic leukemia gene product (PML)-containing nuclear body move to the nucleolus upon inhibition of proteasome-dependent protein degradation. PNAS. 2001;98:1012–1017. doi: 10.1073/pnas.98.3.1012. PubMed DOI PMC

Mooser C, Symeonidou IE, Leimbacher PA, Ribeiro A, Shorrocks AMK, Jungmichel S, Larsen SC, Knechtle K, Jasrotia A, Zurbriggen D, Jeanrenaud A, Leikauf C, Fink D, Nielsen ML, Blackford AN, Stucki M. Treacle controls the nucleolar response to rDNA breaks via TOPBP1 recruitment and ATR activation. Nature Communications. 2020;11:123. doi: 10.1038/s41467-019-13981-x. PubMed DOI PMC

Münch S, Weidtkamp-Peters S, Klement K, Grigaravicius P, Monajembashi S, Salomoni P, Pandolfi PP, Weißhart K, Hemmerich P. The tumor suppressor PML specifically accumulates at RPA/Rad51-containing DNA damage repair foci but is nonessential for DNA damage-induced fibroblast senescence. Molecular and Cellular Biology. 2014;34:1733–1746. doi: 10.1128/MCB.01345-13. PubMed DOI PMC

Negi SS, Brown P. rRNA synthesis inhibitor, CX-5461, activates ATM/ATR pathway in acute lymphoblastic leukemia, arrests cells in G2 phase and induces apoptosis. Oncotarget. 2015;6:18094–18104. doi: 10.18632/oncotarget.4093. PubMed DOI PMC

Nisole S, Maroui MA, Mascle XH, Aubry M, Chelbi-Alix MK. Differential roles of PML isoforms. Frontiers in Oncology. 2013;3:125. doi: 10.3389/fonc.2013.00125. PubMed DOI PMC

O’Connell BC, Adamson B, Lydeard JR, Sowa ME, Ciccia A, Bredemeyer AL, Schlabach M, Gygi SP, Elledge SJ, Harper JW. A genome-wide camptothecin sensitivity screen identifies a mammalian MMS22L-NFKBIL2 complex required for genomic stability. Molecular Cell. 2010;40:645–657. doi: 10.1016/j.molcel.2010.10.022. PubMed DOI PMC

Olivieri M, Cho T, Álvarez-Quilón A, Li K, Schellenberg MJ, Zimmermann M, Hustedt N, Rossi SE, Adam S, Melo H, Heijink AM, Sastre-Moreno G, Moatti N, Szilard RK, McEwan A, Ling AK, Serrano-Benitez A, Ubhi T, Feng S, Pawling J, Delgado-Sainz I, Ferguson MW, Dennis JW, Brown GW, Cortés-Ledesma F, Williams RS, Martin A, Xu D, Durocher D. A genetic map of the response to dna damage in human cells. Cell. 2020;182:481–496. doi: 10.1016/j.cell.2020.05.040. PubMed DOI PMC

Ortega-Atienza S, Wong VC, DeLoughery Z, Luczak MW, Zhitkovich A. ATM and KAT5 safeguard replicating chromatin against formaldehyde damage. Nucleic Acids Research. 2016;44:198–209. doi: 10.1093/nar/gkv957. PubMed DOI PMC

Osterwald S, Deeg KI, Chung I, Parisotto D, Wörz S, Rohr K, Erfle H, Rippe K. PML induces compaction, TRF2 depletion and DNA damage signaling at telomeres and promotes their alternative lengthening. Journal of Cell Science. 2015;128:1887–1900. doi: 10.1242/jcs.148296. PubMed DOI

Pan M, Wright WC, Chapple RH, Zubair A, Sandhu M, Batchelder JE, Huddle BC, Low J, Blankenship KB, Wang Y, Gordon B, Archer P, Brady SW, Natarajan S, Posgai MJ, Schuetz J, Miller D, Kalathur R, Chen S, Connelly JP, Babu MM, Dyer MA, Pruett-Miller SM, Chen T, Godley LA, Blanchard SC, Stewart E, Easton J, Geeleher P. The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma. Nature Communications. 2021;12:6468. doi: 10.1038/s41467-021-26640-x. PubMed DOI PMC

Pang B, Qiao X, Janssen L, Velds A, Groothuis T, Kerkhoven R, Nieuwland M, Ovaa H, Rottenberg S, van Tellingen O, Janssen J, Huijgens P, Zwart W, Neefjes J. Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin. Nature Communications. 2013;4:1908. doi: 10.1038/ncomms2921. PubMed DOI PMC

Pederson T. The nucleolus. Cold Spring Harbor Perspectives in Biology. 2011;3:a000638. doi: 10.1101/cshperspect.a000638. PubMed DOI PMC

Peltonen K, Colis L, Liu H, Jäämaa S, Zhang Z, Af Hällström T, Moore HM, Sirajuddin P, Laiho M. Small molecule BMH-compounds that inhibit RNA polymerase I and cause nucleolar stress. Molecular Cancer Therapeutics. 2014;13:2537–2546. doi: 10.1158/1535-7163.MCT-14-0256. PubMed DOI PMC

Pommier Y, Sun Y, Huang SYN, Nitiss JL. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nature Reviews. Molecular Cell Biology. 2016;17:703–721. doi: 10.1038/nrm.2016.111. PubMed DOI PMC

Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nature Reviews. Molecular Cell Biology. 2022;23:407–427. doi: 10.1038/s41580-022-00452-3. PubMed DOI PMC

Potapova TA, Unruh JR, Conkright-Fincham J, Banks CAS, Florens L, Schneider DA, Gerton JL. Distinct states of nucleolar stress induced by anticancer drugs. eLife. 2023;12:RP88799. doi: 10.7554/eLife.88799. PubMed DOI PMC

Raymond E, Chaney SG, Taamma A, Cvitkovic E. Oxaliplatin: a review of preclinical and clinical studies. Annals of Oncology. 1998;9:1053–1071. doi: 10.1023/a:1008213732429. PubMed DOI

Rizk A, Paul G, Incardona P, Bugarski M, Mansouri M, Niemann A, Ziegler U, Berger P, Sbalzarini IF. Segmentation and quantification of subcellular structures in fluorescence microscopy images using squassh. Nature Protocols. 2014;9:586–596. doi: 10.1038/nprot.2014.037. PubMed DOI

Rodier F, Coppé JP, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nature Cell Biology. 2009;11:973–979. doi: 10.1038/ncb1909. PubMed DOI PMC

Rodier F, Muñoz DP, Teachenor R, Chu V, Le O, Bhaumik D, Coppé JP, Campeau E, Beauséjour CM, Kim SH, Davalos AR, Campisi J. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. Journal of Cell Science. 2011;124:68–81. doi: 10.1242/jcs.071340. PubMed DOI PMC

Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 2017;18:529. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nature Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Schmidt HB, Jaafar ZA, Wulff BE, Rodencal JJ, Hong K, Aziz-Zanjani MO, Jackson PK, Leonetti MD, Dixon SJ, Rohatgi R, Brandman O. Oxaliplatin disrupts nucleolar function through biophysical disintegration. Cell Reports. 2022;41:111629. doi: 10.1016/j.celrep.2022.111629. PubMed DOI PMC

Schürmann L, Schumacher L, Roquette K, Brozovic A, Fritz G. Inhibition of the DSB repair protein RAD51 potentiates the cytotoxic efficacy of doxorubicin via promoting apoptosis-related death pathways. Cancer Letters. 2021;520:361–373. doi: 10.1016/j.canlet.2021.08.006. PubMed DOI

Sehested M, Jensen PB. Mapping of DNA topoisomerase II poisons (etoposide, clerocidin) and catalytic inhibitors (aclarubicin, ICRF-187) to four distinct steps in the topoisomerase II catalytic cycle. Biochemical Pharmacology. 1996;51:879–886. doi: 10.1016/0006-2952(95)02241-4. PubMed DOI

Shav-Tal Y, Blechman J, Darzacq X, Montagna C, Dye BT, Patton JG, Singer RH, Zipori D. Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Molecular Biology of the Cell. 2005;16:2395–2413. doi: 10.1091/mbc.e04-11-0992. PubMed DOI PMC

So A, Dardillac E, Muhammad A, Chailleux C, Sesma-Sanz L, Ragu S, Le Cam E, Canitrot Y, Masson JY, Dupaigne P, Lopez BS, Guirouilh-Barbat J. RAD51 protects against nonconservative DNA double-strand break repair through a nonenzymatic function. Nucleic Acids Research. 2022;50:2651–2666. doi: 10.1093/nar/gkac073. PubMed DOI PMC

Sobell HM, Jain SC, Sakore TD, Nordman CE. Stereochemistry of actinomycin--DNA binding. Nature. 1971;231:200–205. doi: 10.1038/newbio231200a0. PubMed DOI

Stankiewicz P, Lupski JR. Genome architecture, rearrangements and genomic disorders. Trends in Genetics. 2002;18:74–82. doi: 10.1016/s0168-9525(02)02592-1. PubMed DOI

Stoddard BL. Homing endonuclease structure and function. Quarterly Reviews of Biophysics. 2005;38:49–95. doi: 10.1017/S0033583505004063. PubMed DOI

Vancurova M, Hanzlikova H, Knoblochova L, Kosla J, Majera D, Mistrik M, Burdova K, Hodny Z, Bartek J. PML nuclear bodies are recruited to persistent DNA damage lesions in an RNF168-53BP1 dependent manner and contribute to DNA repair. DNA Repair. 2019;78:114–127. doi: 10.1016/j.dnarep.2019.04.001. PubMed DOI

Van Damme E, Laukens K, Dang TH, Van Ostade X. A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. International Journal of Biological Sciences. 2010;6:51–67. doi: 10.7150/ijbs.6.51. PubMed DOI PMC

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology. 2002;3:0034. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC

van Sluis M, McStay B. A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage. Genes & Development. 2015;29:1151–1163. doi: 10.1101/gad.260703.115. PubMed DOI PMC

van Sluis M, Gailín MÓ, McCarter JGW, Mangan H, Grob A, McStay B. Human NORs, comprising rDNA arrays and functionally conserved distal elements, are located within dynamic chromosomal regions. Genes & Development. 2019;33:1688–1701. doi: 10.1101/gad.331892.119. PubMed DOI PMC

van Sluis M, van Vuuren C, Mangan H, McStay B. NORs on human acrocentric chromosome p-arms are active by default and can associate with nucleoli independently of rDNA. PNAS. 2020;117:10368–10377. doi: 10.1073/pnas.2001812117. PubMed DOI PMC

Villa R, Daidone MG, Motta R, Venturini L, De Marco C, Vannelli A, Kusamura S, Baratti D, Deraco M, Costa A, Reddel RR, Zaffaroni N. Multiple mechanisms of telomere maintenance exist and differentially affect clinical outcome in diffuse malignant peritoneal mesothelioma. Clinical Cancer Research. 2008;14:4134–4140. doi: 10.1158/1078-0432.CCR-08-0099. PubMed DOI

Warmerdam DO, van den Berg J, Medema RH. Breaks in the 45S rDNA lead to recombination-mediated loss of repeats. Cell Reports. 2016;14:2519–2527. doi: 10.1016/j.celrep.2016.02.048. PubMed DOI

Warmerdam DO, Wolthuis RMF. Keeping ribosomal DNA intact: a repeating challenge. Chromosome Research. 2019;27:57–72. doi: 10.1007/s10577-018-9594-z. PubMed DOI PMC

Willmore E, Frank AJ, Padget K, Tilby MJ, Austin CA. Etoposide targets topoisomerase IIalpha and IIbeta in leukemic cells: isoform-specific cleavable complexes visualized and quantified in situ by a novel immunofluorescence technique. Molecular Pharmacology. 1998;54:78–85. doi: 10.1124/mol.54.1.78. PubMed DOI

Yeager TR, Neumann AA, Englezou A, Huschtscha LI, Noble JR, Reddel RR. Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Research. 1999;59:4175–4179. PubMed

Yeung PL, Denissova NG, Nasello C, Hakhverdyan Z, Chen JD, Brenneman MA. Promyelocytic leukemia nuclear bodies support a late step in DNA double-strand break repair by homologous recombination. Journal of Cellular Biochemistry. 2012;113:1787–1799. doi: 10.1002/jcb.24050. PubMed DOI PMC

Zeng J, Hills SA, Ozono E, Diffley JFX. Cyclin E-induced replicative stress drives p53-dependent whole-genome duplication. Cell. 2023;186:528–542. doi: 10.1016/j.cell.2022.12.036. PubMed DOI

Zhan H, Suzuki T, Aizawa K, Miyagawa K, Nagai R. Ataxia telangiectasia mutated (ATM)-mediated DNA damage response in oxidative stress-induced vascular endothelial cell senescence. The Journal of Biological Chemistry. 2010;285:29662–29670. doi: 10.1074/jbc.M110.125138. PubMed DOI PMC

Zhang JM, Yadav T, Ouyang J, Lan L, Zou L. Alternative lengthening of telomeres through two distinct break-induced replication pathways. Cell Reports. 2019;26:955–968. doi: 10.1016/j.celrep.2018.12.102. PubMed DOI PMC

Zhang JM, Genois MM, Ouyang J, Lan L, Zou L. Alternative lengthening of telomeres is a self-perpetuating process in ALT-associated PML bodies. Molecular Cell. 2021;81:1027–1042. doi: 10.1016/j.molcel.2020.12.030. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...