Variations in yeast plasma-membrane lipid composition affect killing activity of three families of insect antifungal peptides

. 2019 Dec ; 21 (12) : e13093. [epub] 20190814

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31376220

Grantová podpora
bilateral Mobility project SAV-16-12 CAS - International CEP - Centrální evidence projektů
16-03398S GACR - International
LQ1604 National Sustainability Program II (Project BIOCEV-FAR), project "BIOCEV" (CZ.1.05/1.1.00/02.0109) Ministry of Education, Youth and Sports of CR - International
VEGA-2-0064-16 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences - International

Naturally occurring antimicrobial peptides and their synthetic analogues are promising candidates for new antifungal drugs. We focused on three groups of peptides isolated from the venom of bees and their synthetic analogues (lasioglossins, halictines and hylanines), which all rapidly permeabilised the plasma membrane. We compared peptides' potency against six pathogenic Candida species (C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. krusei and C. dubliniensis) and the non-pathogenic model yeast Saccharomyces cerevisiae. Their activity was independent of the presence of the multidrug-resistant pumps of C. glabrata but was influenced by the lipid composition of cell plasma membranes. Although the direct interaction of the peptides with ergosterol was negligible in comparison with amphotericin B, the diminished ergosterol content after terbinafine pretreatment resulted in an increased resistance of C. glabrata to the peptides. The tested peptides strongly interacted with phosphatidylglycerol, phosphatidic acid and cardiolipin and partly with phosphatidylinositol and phosphatidylethanolamine. The interactions between predominantly anionic phospholipids and cationic peptides indicated a mainly electrostatic binding of peptides to the membranes. The results obtained also pointed to a considerable role of the components of lipid rafts (composed from sphingolipids and ergosterol) in the interaction of yeast cells with the peptides.

Zobrazit více v PubMed

Bagnat, M., Keränen, S., Shevchenko, A., Shevchenko, A., & Simons, K. (2000). Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proceedings of the National Academy of Sciences of the United States of America, 97, 3254-3259.

Campoy, S., & Adrio, J. L. (2017). Antifungals. Biochemical Pharmacology, 133, 86-96. https://doi.org/10.1016/j.bcp.2016.11.019

Čeřovský, V., Buděšínský, M., Hovorka, O., Cvačka, J., Voburka, Z., Slaninová, J., … Straka, J. (2009). Lasioglossins: Three novel antimicrobial peptides from the venom of the eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae). Chembiochem, 10, 2089-2099. https://doi.org/10.1002/cbic.200900133

Chung, N., Mao, C., Heitman, J., Hannun, Y. A., & Obeid, L. M. (2001). Phytosphingosine as a specific inhibitor of growth and nutrient import in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 276, 35614-35621. https://doi.org/10.1074/jbc.M105653200

Cuenca-Estrella, M. (2014). Antifungal drug resistance mechanisms in pathogenic fungi: From bench to bedside. Clinical Microbiology and Infection, 20(Suppl. 6), 54-59. https://doi.org/10.1111/1469-0691.12495

Daum, G., Lees, N. D., Bard, M., & Dickson, R. (1998). Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast, 14, 1471-1510. https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1471::AID-YEA353>3.0.CO;2-Y

Denksteinová, B., Gášková, D., Heřman, P., Večeř, J., Malínský, J., Plášek, J., & Sigler, K. (1997). Monitoring of membrane potential changes in S. cerevisiae by diS-C3(3) fluorescence. Folia Microbiologica, 42, 221-224. https://doi.org/10.1007/BF02818983

Dickson, R. C. (2008). Thematic review series: Sphingolipids. New insights into sphingolipid metabolism and function in budding yeast. Journal of Lipid Research, 49, 909-921.

Dickson, R. C., & Lester, R. L. (1999). Yeast sphingolipids. Biochimica et Biophysica Acta, 1426, 347-357. https://doi.org/10.1016/S0304-4165(98)00135-4

Dupont, S., Lemetais, G., Ferreira, T., Cayot, P., Gervais, P., & Beney, L. (2012). Ergosterol biosynthesis: A fungal pathway for life on land? Evolution, 66, 2961-2968. https://doi.org/10.1111/j.1558-5646.2012.01667.x

Ejsing, C. S., Sampaio, J. L., Surendranath, V., Duchoslav, E., Ekroos, K., Klemm, R. W., … Shevchenko, A. (2009). Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 106, 2136-2141.

Epand, R. M., & Epand, R. F. (2009). Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochimica et Biophysica Acta, 1788, 289-294. https://doi.org/10.1016/j.bbamem.2008.08.023

Garaiová, M., Zambojová, V., Šimová, Z., Griač, P., & Hapala, I. (2014). Squalene epoxidase as a target for manipulation of squalene levels in the yeast Saccharomyces cerevisiae. FEMS Yeast Research, 14, 310-323. https://doi.org/10.1111/1567-1364.12107

Gášková, D., Brodská, B., Heřman, P., Večeř, J., Malínský, J., Sigler, K., … Plášek, J. (1998). Fluorescent probing of membrane potential in walled cells: diS-C3(3) assay in Saccharomyces cerevisiae. Yeast, 14, 1189-1197. https://doi.org/10.1002/(SICI)1097-0061(19980930)14:13<1189::AID-YEA320>3.0.CO;2-K

Jacquier, N., & Schneiter, R. (2012). Mechanisms of sterol uptake and transport in yeast. The Journal of Steroid Biochemistry and Molecular Biology, 129, 70-78. https://doi.org/10.1016/j.jsbmb.2010.11.014

Kainou, K., Kamisaka, Y., Kimura, K., & Uemura, H. (2006). Isolation of Δ12 and ω3-fatty acid desaturase genes from the yeast Kluyveromyces lactis and their heterologous expression to produce linoleic and α-linolenic acids in Saccharomyces cerevisiae. Yeast, 23, 605-612. https://doi.org/10.1002/yea.1378

Klug, L., & Daum, G. (2014). Yeast lipid metabolism at a glance. FEMS Yeast Research, 14, 369-388. https://doi.org/10.1111/1567-1364.12141

Kočendová, J., Vaňková, E., Volejníková, A., Nešuta, O., Buděšínský, M., Socha, O., … Čeřovský, V. (2019). Antifungal activity of analogues of antimicrobial peptides isolated from bee venoms against vulvovaginal Candida spp. FEMS Yeast Research, 19, foz013.

Kodedová, M., Sigler, K., Lemire, B. D., & Gášková, D. (2011). Fluorescence method for determining the mechanism and speed of action of surface-active drugs on yeast cells. BioTechniques, 50, 58-63. https://doi.org/10.2144/000113568

Kodedová, M., & Sychrová, H. (2015). Changes in the sterol composition of the plasma membrane affect membrane potential, salt tolerance and the activity of multidrug resistance pumps in Saccharomyces cerevisiae. PLoS ONE, 10, e0139306. https://doi.org/10.1371/journal.pone.0139306

Kodedová, M., & Sychrová, H. (2016). High-throughput fluorescence screening assay for the identification and comparison of antimicrobial peptides' activity on various yeast species. Journal of Biotechnology, 233, 26-33. https://doi.org/10.1016/j.jbiotec.2016.06.023

Kodedová, M., & Sychrová, H. (2017). Synthetic antimicrobial peptides of the halictines family disturb the membrane integrity of Candida cells. Biochimica et Biophysica Acta, 1859, 1851-1858. https://doi.org/10.1016/j.bbamem.2017.06.005

Lattif, A. A., Mukherjee, P. K., Chandra, J., Roth, M. R., Welti, R., Rouabhia, M., & Ghannoum, M. A. (2011). Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation. Microbiology, 157, 3232-3242. https://doi.org/10.1099/mic.0.051086-0

Malínský, J., Opekarová, M., & Tanner, W. (2010). The lateral compartmentation of the yeast plasma membrane. Yeast, 27, 473-478. https://doi.org/10.1002/yea.1772

Malínský, J., Tanner, W., & Opekarová, M. (2016). Transmembrane voltage: Potential to induce lateral microdomains. Biochimica et Biophysica Acta, 1861, 806-811. https://doi.org/10.1016/j.bbalip.2016.02.012

van Meer, G., Voelker, D. R., & Feigenson, G. W. (2008). Membrane lipids: Where they are and how they behave. Nature Reviews. Molecular and Cellular Biology, 9, 112-124.

Melicherčík, P., Nešuta, O., & Čeřovský, V. (2018). Antimicrobial peptides for topical treatment of osteomyelitis and implant-related infections: study in the spongy bone. Pharmaceuticals (Basel), 11, E20.

Nešuta, O., Hexnerová, R., Buděšínský, M., Slaninová, J., Bednárová, L., Hadravová, R., … Čeřovský, V. (2016). Antimicrobial peptide from the wild bee Hylaeus signatus venom and its analogues: Structure-activity study and synergistic effect with antibiotics. Journal of Natural Products, 79, 1073-1083. https://doi.org/10.1021/acs.jnatprod.5b01129

Pazderková, M., Maloň, P., Zíma, V., Hofbauerová, K., Kopecký, V. Jr., Kočišová, E., … Bednárová, L. (2019). Interaction of halictine-related antimicrobial peptides with membrane models. International Journal of Molecular Sciences, 20, E631.

Pfaller, M. A., Andes, D. R., Diekema, D. J., Horn, D. L., Reboli, A. C., Rotstein, C., … Azie, N. E. (2014). Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients: Data from the prospective antifungal therapy (PATH) registry 2004-2008. PLoS ONE, 9, e101510. https://doi.org/10.1371/journal.pone.0101510

Prasad, R., & Singh, A. (2013). Lipids of Candida albicans and their role in multidrug resistance. Current Genetics, 59, 243-250. https://doi.org/10.1007/s00294-013-0402-1

Rautenbach, M., Troskie, A. M., & Vosloo, J. A. (2016). Antifungal peptides: To be or not to be membrane active. Biochimie, 130, 132-145. https://doi.org/10.1016/j.biochi.2016.05.013

Rella, A., Farnoud, A. M., & Del Poeta, M. (2016). Plasma membrane lipids and their role in fungal virulence. Progress in Lipid Research, 61, 63-72. https://doi.org/10.1016/j.plipres.2015.11.003

Sanglard, D., Ischer, F., Calabrese, D., Majcherczyk, P. A., & Bille, J. (1999). The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrobial Agents and Chemotherapy, 43, 2753-2765. https://doi.org/10.1128/AAC.43.11.2753

Seč, P., Garaiová, M., Gajdoš, P., Čertík, M., Griač, P., Hapala, I., & Holič, R. (2015). Baker's yeast deficient in storage lipid synthesis uses cis-vaccenic acid to reduce unsaturated fatty acid toxicity. Lipids, 50, 621-630. https://doi.org/10.1007/s11745-015-4022-z

Singh, A., Prasad, T., Kapoor, K., Mandal, A., Roth, M., Welti, R., & Prasad, R. (2010). Phospholipidome of Candida: Each species of Candida has distinctive phospholipid molecular species. OMICS: A Journal of Integrative Biology, 14, 665-677. https://doi.org/10.1089/omi.2010.0041

Spanova, M., Czabany, T., Zellnig, G., Leitner, E., Hapala, I., & Daum, G. (2010). Effect of lipid particle biogenesis on the subcellular distribution of squalene in the yeast Saccharomyces cerevisiae. The Journal of Biological Chemistry, 285, 6127-6133. https://doi.org/10.1074/jbc.M109.074229

Uemura, S., Shishido, F., Tani, M., Mochizuki, T., Abe, F., & Inokuchi, J. (2014). Loss of hydroxyl groups from the ceramide moiety can modify the lateral diffusion of membrane proteins in S. cerevisiae. Journal of Lipid Research, 55, 1343-1356. https://doi.org/10.1194/jlr.M048637

Valachovič, M., Garaiová, M., Holič, R., & Hapala, I. (2016). Squalene is lipotoxic to yeast cells defective in lipid droplet biogenesis. Biochemical and Biophysical Research Communications, 469, 1123-1128. https://doi.org/10.1016/j.bbrc.2015.12.050

Zinser, E., Sperka-Gottlieb, C. D. M., Fasch, E. V., Kohlwein, S. D., Paltauf, F., & Daum, G. (1991). Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. Journal of Bacteriology, 173, 2026-2034. https://doi.org/10.1128/jb.173.6.2026-2034.1991

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Styrylpyridinium Derivatives as New Potent Antifungal Drugs and Fluorescence Probes

. 2020 ; 11 () : 2077. [epub] 20200828

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace