Styrylpyridinium Derivatives as New Potent Antifungal Drugs and Fluorescence Probes

. 2020 ; 11 () : 2077. [epub] 20200828

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32983055

The incidence of Candida glabrata infections increases every year due to its higher resistance to commonly used antifungal drugs. We characterized the antifungal mechanism of action of eight new styrylpyridinium derivatives, with various N-alkyl chains (-C6H13, -C8H17, -C10H21, -C12H25) and different substituents, on C. glabrata strains differing in their drug resistance due to the presence or absence of two major drug-efflux pumps. We found that the tested styrylpyridinium compounds affected the growth of C. glabrata cells in a compound- and strain-dependent manner, and apparently they were substrates of CgCdr1 and CgCdr2 pumps. Further, we determined the impact of the tested compounds on plasma membrane integrity. The ability to cause damage to a plasma membrane depended on the compound, its concentration and the presence of efflux pumps, and corresponded well with the results of growth and survival tests. We also tested possible synergism with three types of known antifungal drugs. Though we did not observe any synergism with azole drugs, styrylpyridinium compounds 5 and 6 together with FK506 demonstrated excellent antifungal properties, whereas compounds 2, 3, 5, and 6 exhibited a significant synergistic effect in combination with terbinafine. Based on our results, derivatives 2 and 6 turned out to be the most promising antifungal drugs. Moreover, compound 6 was not only able to effectively permeabilize the yeast plasma membrane, but also exhibited significant synergism with FK506 and terbinafine. Finally, we also characterized the spectroscopic properties of the tested styrylpyridinium compounds. We measured their absorption and fluorescence spectra, determined their localization in yeast cells and found that their fluorescence characteristics differ from the properties of current commercial vacuolar styrylpyridinium markers and allow multi-color staining. Compounds 1, 3, 7, and 8 were able to accumulate in plasma and vacuolar membranes, and compounds 2, 5, and 6 stained the whole interior of dead cells. In summary, of the eight tested compounds, compound 6 is the most promising antifungal drug, compound 8, due to its minimal toxicity, is the best candidate for a new vacuolar-membrane probe or new benchmark substrate of C. glabrata Cdr pumps, and derivative 5 for a new vital dye.

Zobrazit více v PubMed

Barchiesi F., Di Francesco L. F., Compagnucci P., Arzeni D., Giacometti A., Scalise G. (1998). In-vitro interaction of terbinafine with amphotericin B, fluconazole and itraconazole against clinical isolates of Candida albicans. J. Antimicrob. Chemother. 41 59–65. 10.1093/jac/41.1.59 PubMed DOI

Bolte S., Talbot C., Boutte Y., Catrice O., Read N. D., Satiat-Jeunemaitre B. (2004). FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J. Microsc. 214 159–172. PubMed

Campoy S., Adrio J. L. (2017). Antifungals. Biochem. Pharmacol. 133 86–96. PubMed

Cannon R. D., Lamping E., Holmes A. R., Niimi K., Baret P. V., Keniya M. V., et al. (2009). Efflux-mediated antifungal drug resistance. Clin. Microbiol. Rev. 22 291–321. PubMed PMC

Chanawanno K., Chantrapromma S., Anantapong T., Kanjana-Opas A., Fun H. K. (2010). Synthesis, structure and in vitro antibacterial activities of new hybrid disinfectants quaternary ammonium compounds: Pyridinium and quinolinium stilbene benzenesulfonates. Eur. J. Med. Chem. 45 4199–4208. 10.1016/j.ejmech.2010.06.014 PubMed DOI

Cruz M. C., Goldstein A. L., Blankenship J. R., Del Poeta M., Davis D., Cardenas M. E., et al. (2002). Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J. 21 546–559. 10.1093/emboj/21.4.546 PubMed DOI PMC

Denardi L. B., Mario D. A. N., Loreto E. S., Santurio J. M., Alves S. H. (2015). Synergistic effects of tacrolimus and azole antifungal compounds in fluconazole-susceptible and fluconazole-resistant Candida glabrata isolates. Braz. J. Microbiol. 46 125–129. 10.1590/s1517-838246120120442 PubMed DOI PMC

Denksteinová B., Gášková D., Heřman P., Večeř J., Malínský J., Plášek J., et al. (1997). Monitoring of membrane potential changes in S. cerevisiae by diS-C3(3) fluorescence. Folia Microbiol. 42 221–224. 10.1007/bf02818983 PubMed DOI

Dubur G. Y., Dobretsov G. E., Deme A. K., Dubure R. R., Lapshin E. N., Spirin M. M. (1984). Fluorescent probes based on styrylpyridinium derivatives: optical properties and membrane binding. J. Biochem. Biophys. Methods 10 123–134. 10.1016/0165-022x(84)90032-0 PubMed DOI

Gao Z., Hao Y., Zheng M., Chen Y. (2017). A fluorescent dye with large Stokes shift and high stability: synthesis and application to live cell imaging. RSC Adv. 7 7604–7609. 10.1039/c6ra27547h DOI

Gášková D., Brodská B., Heřman P., Večeř J., Malínský J., Sigler K., et al. (1998). Fluorescent probing of membrane potential in walled cells: diS-C3(3) assay in Saccharomyces cerevisiae. Yeast 14 1189–1197. 10.1002/(sici)1097-0061(19980930)14:13<1189::aid-yea320>3.0.co;2-k PubMed DOI

Heese-Peck A., Pichler H., Zanolari B., Watanabe R., Daum G., Riezman H. (2002). Multiple functions of sterols in yeast endocytosis. Mol. Biol. Cell 13 2664–2680. 10.1091/mbc.e02-04-0186 PubMed DOI PMC

Jung J. A., Yoon Y. J. (2020). Development of non-immunosuppressive FK506 derivatives as antifungal and neurotrophic agents. J. Microbiol. Biotechnol. 30 1–10. 10.4014/jmb.1911.11008 PubMed DOI PMC

Kodedová M., Sigler K., Lemire B. D., Gášková D. (2011). Fluorescence method for determining the mechanism and speed of action of surface-active drugs on yeast cells. BioTechniques 50 58–63. 10.2144/000113568 PubMed DOI

Kodedová M., Sychrová H. (2016). High-throughput fluorescence screening assay for the identification and comparison of antimicrobial peptides’ activity on various yeast species. J. Biotechnol. 233 26–33. 10.1016/j.jbiotec.2016.06.023 PubMed DOI

Kodedová M., Valachovič M., Csáky Z., Sychrová H. (2019). Variations in yeast plasma-membrane lipid composition affect killing activity of three families of insect antifungal peptides. Cell. Microbiol. 21 e13093. 10.1111/cmi.13093 PubMed DOI

Krieg R., Eitner A., Günther W., Halbhuber K. J. (2007). Optimization of heterocyclic 4-hydroxystyryl derivatives for histological localization of endogenous and immunobound peroxidase activity. Biotech. Histochem. 82 235–262. 10.1080/10520290701714013 PubMed DOI

Ksiezopolska E., Gabaldón T. (2018). Evolutionary emergence of drug resistance in Candida opportunistic pathogens. Genes 9:461. 10.3390/genes9090461 PubMed DOI PMC

Mathé L., Van Dijck P. (2013). Recent insights into Candida albicans biofilm resistance mechanisms. Curr. Genet. 59 251–264. 10.1007/s00294-013-0400-3 PubMed DOI PMC

Miner G. E., Sullivan K. D., Zhang C., Hurst L. R., Starr M. L., Rivera-Kohr D. A., et al. (2019). Copper blocks V-ATPase activity and SNARE complex formation to inhibit yeast vacuole fusion. Traffic 20 841–850. PubMed PMC

Mishra B. K., Behera P. K., Rath R. (2001). Acid dissociation constants of N-alkyl p/o-hydroxy styryl pyridinium dyes in surfactant solutions. Indian J. Chem. 40A 155–158.

Pais P., Galocha M., Viana R., Cavalheiro M., Pereira D., Teixeira M. C. (2019). Microevolution of the pathogenic yeasts Candida albicans and Candida glabrata during antifungal therapy and host infection. Microb. Cell 6 142–159. 10.15698/mic2019.03.670 PubMed DOI PMC

Park H. S., Lee S. C., Cardenas M. E., Heitman J. (2019). Calcium-calmodulin-calcineurin signaling: a globally conserved virunce cascade in eukaryotic microbial pathogens. Cell Host Microbe 26 453–462. 10.1016/j.chom.2019.08.004 PubMed DOI PMC

Petrikkos G., Skiada A. (2007). Recent advances in antifungal chemotherapy. Int. J. Antimicrob. Agents 30 108–117. 10.1016/j.ijantimicag.2007.03.009 PubMed DOI

Puri N., Manoharlal R., Sharma M., Sanglard D., Prasad R. (2011). Overcoming the heterologous bias: an in vivo functional analysis of multidrug efflux transporter, CgCdr1p in matched pair clinical isolates of Candida glabrata. Biochem. Biophys. Res. Commun. 404 357–363. 10.1016/j.bbrc.2010.11.123 PubMed DOI

Sanglard D., Ischer F., Bille J. (2001). Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob. Agents Chemother. 45 1174–1183. 10.1128/aac.45.4.1174-1183.2001 PubMed DOI PMC

Sanglard D., Ischer F., Calabrese D., Majcherczyk P. A., Bille J. (1999). The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob. Agents Chemother. 43 2753–2765. 10.1128/aac.43.11.2753 PubMed DOI PMC

Scheid L. A., Mario D. A. N., Kubiça T. F., Santurio J. M., Alves S. H. (2012). In vitro activities of antifungal agents alone and in combination against fluconazole-susceptible and -resistant strains of Candida dubliniensis. Braz. J. Infect. Dis. 16 78–81. 10.1590/s1413-86702012000100014 PubMed DOI

Shiraishi Y., Inoue T., Hirai T. (2010). Local viscosity analysis of triblock copolymer micelle with cyanine dyes as a fluorescent probe. Langmuir 26 17505–17512. 10.1021/la1028993 PubMed DOI

Shrestha S. K., Fosso M. Y., Garneau-Tsodikova S. (2015). A combination approach to treating fungal infections. Sci. Rep. 5:17070. 10.1038/srep17070 PubMed DOI PMC

Urai M., Kaneko Y., Niki M., Inoue M., Tanabe K., Umeyama T., et al. (2014). Potent drugs that attenuate anti-Candida albicans activity of fluconazole and their possible mechanisms of action. J. Infect. Chemother. 20 612–615. 10.1016/j.jiac.2014.06.004 PubMed DOI

Vaitkienė S., Kuliešinė N., Sakalauskaitė S., Bekere L., Krasnova L., Vigante B., et al. (2020). Antifungal activity of styrylpyridinium compounds against Candida alicans. Chem. Biol. Drug Des. 10.1111/cbdd.13777 Online ahead of print PubMed DOI

Wyrzykiewicz E., Prukała W., Kędzia B. (1994). Synthesis and antimicrobial properties of N-substituted derivatives of (E)-α-(or γ)-azastilbenols. Farmaco 49 127–131. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...