Topoisomerase II-Induced Chromosome Breakage and Translocation Is Determined by Chromosome Architecture and Transcriptional Activity
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
ZIA BC010959-11
Intramural NIH HHS - United States
693949
European Research Council - International
27322
Cancer Research UK - United Kingdom
Z01 BC006161
Intramural NIH HHS - United States
ZIA BC010283-21
Intramural NIH HHS - United States
16771
Cancer Research UK - United Kingdom
PubMed
31202577
PubMed Central
PMC8170508
DOI
10.1016/j.molcel.2019.04.030
PII: S1097-2765(19)30322-3
Knihovny.cz E-zdroje
- Klíčová slova
- 3D chromatin organization, DNA double-strand breaks, TDP2, chromosomal translocations, cohesin, proteasome, quantitative modeling, topoisomerase, topoisomerase 2 cleavage complex, transcription,
- MeSH
- chromozomy genetika MeSH
- DNA vazebné proteiny chemie genetika MeSH
- DNA-topoisomerasy typu II chemie genetika MeSH
- DNA chemie genetika MeSH
- dvouřetězcové zlomy DNA * MeSH
- etoposid chemie MeSH
- genetická transkripce MeSH
- genová konverze genetika MeSH
- HCT116 buňky MeSH
- inhibitory topoisomerasy II chemie farmakologie MeSH
- kinetika MeSH
- lidé MeSH
- multiproteinové komplexy chemie genetika MeSH
- oprava DNA genetika MeSH
- proteiny vázající poly-ADP-ribosu chemie genetika MeSH
- torze mechanická MeSH
- translokace genetická genetika MeSH
- zlomy chromozomů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- DNA-topoisomerasy typu II MeSH
- DNA MeSH
- etoposid MeSH
- inhibitory topoisomerasy II MeSH
- multiproteinové komplexy MeSH
- proteiny vázající poly-ADP-ribosu MeSH
- TOP2A protein, human MeSH Prohlížeč
Topoisomerase II (TOP2) relieves torsional stress by forming transient cleavage complex intermediates (TOP2ccs) that contain TOP2-linked DNA breaks (DSBs). While TOP2ccs are normally reversible, they can be "trapped" by chemotherapeutic drugs such as etoposide and subsequently converted into irreversible TOP2-linked DSBs. Here, we have quantified etoposide-induced trapping of TOP2ccs, their conversion into irreversible TOP2-linked DSBs, and their processing during DNA repair genome-wide, as a function of time. We find that while TOP2 chromatin localization and trapping is independent of transcription, it requires pre-existing binding of cohesin to DNA. In contrast, the conversion of trapped TOP2ccs to irreversible DSBs during DNA repair is accelerated 2-fold at transcribed loci relative to non-transcribed loci. This conversion is dependent on proteasomal degradation and TDP2 phosphodiesterase activity. Quantitative modeling shows that only two features of pre-existing chromatin structure-namely, cohesin binding and transcriptional activity-can be used to predict the kinetics of TOP2-induced DSBs.
Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology NIH Bethesda MD USA
Genome Damage and Stability Centre University of Sussex Falmer Brighton BN1 9RQ UK
Laboratory of Genome Integrity National Cancer Institute NIH Bethesda MD USA
Research Institute of Molecular Pathology Vienna Biocenter Vienna Austria
Zobrazit více v PubMed
Acunzo M, Romano G, Wernicke D, Balatti V, Rassenti LZ, dell’Aquila M, Kipps TJ, Pekarsky Y, and Croce CM (2014). Translocation t(2;11) in CLL cells results in CXCR4/MAML2 fusion oncogene. Blood 124, 259–262. PubMed PMC
Agostinho M, Rino J, Braga J, Ferreira F, Steffensen S, and Ferreira J (2004). Human topoisomerase IIalpha: targeting to subchromosomal sites of activity during interphase and mitosis. Mol. Biol. Cell 15, 2388–2400. PubMed PMC
Ashour ME, Atteya R, and El-Khamisy SF (2015). Topoisomerase-mediated chromosomal break repair: an emerging player in many games. Nat. Rev. Cancer 15, 137–151. PubMed
Ban Y, Ho CW, Lin RK, Lyu YL, and Liu LF (2013). Activation of a novel ubiquitin-independent proteasome pathway when RNA polymerase II encounters a protein roadblock. Mol. Cell. Biol 33, 4008–4016. PubMed PMC
Bredemeyer AL, Sharma GG, Huang CY, Helmink BA, Walker LM, Khor KC, Nuskey B, Sullivan KE, Pandita TK, Bassing CH, and Sleckman BP (2006). ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 442, 466–470. PubMed
Busslinger GA, Stocsits RR, van der Lelij P, Axelsson E, Tedeschi A, Galjart N, and Peters JM (2017). Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 544, 503–507. PubMed PMC
Callen E, Di Virgilio M, Kruhlak MJ, Nieto-Soler M, Wong N, Chen HT, Faryabi RB, Polato F, Santos M, Starnes LM, et al. (2013). 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell 153, 1266–1280. PubMed PMC
Canela A, Sridharan S, Sciascia N, Tubbs A, Meltzer P, Sleckman BP, and Nussenzweig A (2016). DNA breaks and end resection measured genome-wide by end sequencing. Mol. Cell 63, 898–911. PubMed PMC
Canela A, Maman Y, Jung S, Wong N, Callen E, Day A, Kieffer-Kwon KR, Pekowska A, Zhang H, Rao SSP, et al. (2017). Genome organization drives chromosome fragility. Cell 170, 507–521. PubMed PMC
Chase JW, and Richardson CC (1974). Exonuclease VII of Escherichia coli. Mechanism of action. J. Biol. Chem 249, 4553–4561. PubMed
Cortes Ledesma F, El Khamisy SF, Zuma MC, Osborn K, and Caldecott KW (2009). A human 5′-tyrosyl DNA phosphodiesterase that repairs topo- isomerase-mediated DNA damage. Nature 461, 674–678. PubMed
Cowell IG, and Austin CA (2012a). Do transcription factories and TOP2B provide a recipe for chromosome translocations in therapy-related leukemia? Cell Cycle 11, 3143–3144. PubMed PMC
Cowell IG, and Austin CA (2012b). Mechanism of generation of therapy related leukemia in response to anti-topoisomerase II agents. Int. J. Environ. Res. Public Health 9, 2075–2091. PubMed PMC
Cowell IG, Sondka Z, Smith K, Lee KC, Manville CM, Sidorczuk-Lesthuruge M, Rance HA, Padget K, Jackson GH, Adachi N, and Austin CA (2012). Model for MLL translocations in therapy-related leukemia involving topoisomerase IIβ-mediated DNA strand breaks and gene proximity. Proc. Natl. Acad. Sci. USA 109, 8989–8994. PubMed PMC
Difilippantonio MJ, Zhu J, Chen HT, Meffre E, Nussenzweig MC, Max EE, Ried T, and Nussenzweig A (2000). DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404,510–514. PubMed PMC
Dorsett Y, Zhou Y, Tubbs AT, Chen BR, Purman C, Lee BS, George R, Bredemeyer AL, Zhao JY, Sodergen E, et al. (2014). HCoDES reveals chromosomal DNA end structures with single-nucleotide resolution. Mol. Cell 56, 808–818. PubMed PMC
Ferguson DO, Sekiguchi JM, Chang S, Frank KM, Gao Y, DePinho RA, and Alt FW (2000). The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc. Natl. Acad. Sci. USA 97, 6630–6633. PubMed PMC
Frock RL, Hu J, Meyers RM, Ho YJ, Kii E, and Alt FW (2015). Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol 33, 179–186. PubMed PMC
Gao R, Huang SY, Marchand C, and Pommier Y (2012). Biochemical characterization of human tyrosyl-DNA phosphodiesterase 2 (TDP2/TTRAP): a Mg(2+)/Mn(2+)-dependent phosphodiesterase specific for the repair of topoisomerase cleavage complexes. J. Biol. Chem 287, 30842–30852. PubMed PMC
Gómez-Herreros F, Romero-Granados R, Zeng Z, Alvarez-Quilón A, Quintero C, Ju L, Umans L, Vermeire L, Huylebroeck D, Caldecott KW, and Córtes-Ledesma F (2013). TDP2-dependent non-homologous end-joining protects against topoisomerase II-induced DNA breaks and genome instability in cells and in vivo. PLoS Genet. 9, e1003226. PubMed PMC
Gùmez-Herreros F, Zagnoli-Vieira G, Ntai I, Martínez-Macías MI, Anderson RM, Herrero-Ruíz A, and Caldecott KW (2017). TDP2 suppresses chromosomal translocations induced by DNA topoisomerase II during gene transcription. Nat. Commun 8, 233. PubMed PMC
Grant CE, Bailey TL, and Noble WS (2011). FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018. PubMed PMC
Haarhuis JHI, van der Weide RH, Blomen VA, Yanez-Cuna JO, Amendola M, van Ruiten MS, Krijger PHL, Teunissen H, Medema RH, van Steensel B, et al. (2017). The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707. PubMed PMC
Hoa NN, Shimizu T, Zhou ZW, Wang ZQ, Deshpande RA, Paull TT, Akter S, Tsuda M, Furuta R, Tsutsui K, et al. (2016). Mre11 is essential for the removal of lethal topoisomerase 2 covalent cleavage complexes. Mol. Cell 64, 580–592. PubMed
Hu J, Meyers RM, Dong J, Panchakshari RA, Alt FW, and Frock RL (2016). Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nat. Protoc 11, 853–871. PubMed PMC
lacovoni JS, Caron P, Lassadi I, Nicolas E, Massip L, Trouche D, and Legube G (2010). High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome. EMBO J. 29, 1446–1457. PubMed PMC
Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, and Kent WJ (2004). The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 32, D493–D496. PubMed PMC
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, and Haussler D (2002). The human genome browser at UCSC. Genome Res. 12, 996–1006. PubMed PMC
Kent WJ, Zweig AS, Barber G, Hinrichs AS, and Karolchik D (2010). BigWig and BigBed: enabling browsing of large distributed data sets. Bioinformatics 26, 2204–2207. PubMed PMC
Kiianitsa K, and Maizels N (2013). A rapid and sensitive assay for DNA-protein covalent complexes in living cells. Nucleic Acids Res. 41, e104. PubMed PMC
Kohn KW (1996). Beyond DNA cross-linking: history and prospects of DNA-targeted cancer treatment-fifteenth Bruce F. Cain Memorial Award Lecture. Cancer Res. 56, 5533–5546. PubMed
Krivtsov AV, Figueroa ME, Sinha AU, Stubbs MC, Feng Z, Valk PJ, Delwel R, Döhner K, Bullinger L, Kung AL, et al. (2013). Cell of origin determines clinically relevant subtypes of MLL-rearranged AML. Leukemia 27, 852–860. PubMed PMC
Langmead B, Trapnell C, Pop M, and Salzberg SL (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25. PubMed PMC
Lee KC, Bramley RL, Cowell IG, Jackson GH, and Austin CA (2016). Proteasomal inhibition potentiates drugs targeting DNA topoisomerase ll. Biochem. Pharmacol 103, 29–39. PubMed PMC
Long BH, Musial ST, and Brattain MG (1985). Single- and double-strand DNA breakage and repair in human lung adenocarcinoma cells exposed to etoposide and teniposide. Cancer Res. 45, 3106–3112. PubMed
Manasanch EE, and Orlowski RZ (2017). Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol 14, 417–33. PubMed PMC
Mao Y, Desai SD, Ting CY, Hwang J, and Liu LF (2001). 26 S proteasome-mediated degradation of topoisomerase II cleavable complexes. J. Biol. Chem 276, 40652–40658. PubMed
Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, Arenillas DJ, Buchman S, Chen CY, Chou A, lenasescu H, et al. (2014). JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res. 42, D142–D147. PubMed PMC
Natsume T, Kiyomitsu T, Saga Y, and Kanemaki MT (2016). Rapid protein depletion in human cells by auxin-inducible degron tagging with short homology donors. Cell Rep. 15, 210–218. PubMed
Nitiss JL (2009). DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer 9, 327–337. PubMed PMC
Nitiss JL, Soans E, Rogojina A, Seth A, and Mishina M (2012). Topoisomerase assays. Curr Protoc Pharmacol Chapter 3. Unit 3.3. PubMed PMC
Ong CT, and Corces VG (2014). CTCF: an architectural protein bridging genome topology and function. Nat. Rev. Genet 15, 234–246. PubMed PMC
Pommier Y, Sun Y, Huang SN, and Nitiss JL (2016). Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol 17, 703–721. PubMed PMC
Quinlan AR, and Hall IM (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842. PubMed PMC
R Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing; http://www.R-project.org/.
Schellenberg MJ, Lieberman JA, Herrero-Rulz A, Butler LR, Williams JG, Muñoz-Cabello AM, Mueller GA, London RE, Cortés-Ledesma F, and Williams RS (2017). ZATT (ZNF451)-mediated resolution of topoisomerase 2 DNA-protein cross-links. Science 357, 1412–1416. PubMed PMC
Stingele J, Bellelli R, and Boulton SJ (2017). Mechanisms of DNA-protein crosslink repair. Nat. Rev. Mol. Cell Biol 18, 563–573. PubMed
Tedeschi A, Wutz G, Huet S, Jaritz M, Wuensche A, Schirghuber E, Davidson IF, Tang W, Cisneros DA, Bhaskara V, et al. (2013). Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature 501, 564–568. PubMed PMC
Uusküla-Reimand L, Hou H, Samavarchi-Tehrani P, Rudan MV, Liang M, Medina-Rivera A, Mohammed H, Schmidt D, Schwalie P, Young EJ, et al. (2016). Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol. 17, 182. PubMed PMC
van Cuijk L, Vermeulen W, and Marteijn JA (2014). Ubiquitin at work: the ubiquitous regulation of the damage recognition step of NER. Exp. Cell Res 329, 101–109. PubMed
Vian L, Pekowska A, Rao SSP, Kieffer-Kwon KR, Jung S, Baranello L, Huang SC, El Khattabi L, Dose M, Pruett N, et al. (2018). The energetics and physiological impact of cohesin extrusion. Cell 173, 1165–1178. PubMed PMC
Willmore E, Frank AJ, Padget K, Tilby MJ, and Austin CA (1998). Etoposide targets topoisomerase IIalpha and IIbeta in leukemic cells: isoform-specific cleavable complexes visualized and quantified in situ by a novel immunofluorescence technique. Mol. Pharmacol 54, 78–85. PubMed
Wutz G, Varnai C, Nagasaka K, Cisneros DA, Stocsits RR, Tang W, Schoenfelder S, Jessberger G, Muhar M, Hossain MJ, et al. (2017). Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 36, 3573–3599. PubMed PMC
Yang X, Li W, Prescott ED, Burden SJ, and Wang JC (2000). DNA Topoisomerase IIβ and Neural Development. Science 287, 131–134. PubMed
Yoshida MM, Ting L, Gygi SP, and Azuma Y (2016). SUMOylation of DNA topoisomerase IIα regulates histone H3 kinase Haspin and H3 phosphorylation in mitosis. J. Cell Biol 273, 665–678. PubMed PMC
Zagnoli-Vieira G, and Caldecott KW (2017). TDP2, TOP2, and SUMO: what is ZATT about? Cell Res. 27, 1405–1406. PubMed PMC
Zagnoli-Vieira G, Bruni F, Thompson K, He L, Walker S, de Brouwer APM, Taylor R, Niyazov D, and Caldecott KW (2018). Confirming TDP2 mutation in spinocerebellar ataxia autosomal recessive 23 (SCAR23). Neurol Genet 4, e262. PubMed PMC
Zeng Z, Cortés-Ledesma F, El Khamisy SF, and Caldecott KW (2011). TDP2/TTRAP is the major 5′-tyrosyl DNA phosphodiesterase activity in vertebrate cells and is critical for cellular resistance to topoisomerase II-induced DNA damage. J. Biol. Chem 286, 403–09. PubMed PMC
Zhang A, Lyu YL, Lin CP, Zhou N, Azarova AM, Wood LM, and Liu LF (2006). A protease pathway for the repair of topoisomerase II-DNA covalent complexes. J. Biol. Chem 287, 35997–36003. PubMed
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, and Liu XS (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137. PubMed PMC