Most cited article - PubMed ID 31326998
Various conjugative plasmids carrying the mcr-5 gene in Escherichia coli isolates from healthy chickens in Paraguay
Poultry represents a common source of bacteria with resistance to antibiotics including the critically important ones. Selective cultivation using colistin, cefotaxime and meropenem was performed for 66 chicken samples coming from 12 farms in Paraguay while two breeding companies supplied the farms. A total of 62 Escherichia coli and 22 Klebsiella pneumoniae isolates were obtained and representative isolates were subjected to whole-genome sequencing. Relatively high prevalence of phylogenetic group D and F was observed in E. coli isolates and several zoonotic sequence types (STs) including ST457 (14 isolates), ST38 (5), ST10 (2), ST117 (2) or ST93 (4) were detected. Isolates from three farms, which purchased chicken from a Paraguayan hatchery showed higher prevalence of mcr-5.1 and blaCTX-M-8 compared to the other nine farms, which purchased chickens from a Brazilian hatchery. Moreover, none of the K. pneumoniae isolates were linked to the Paraguayan hatchery. ESBL/AmpC and mcr-5-carrying multi-drug resistant (MDR) plasmids were characterized, and complete sequences were obtained for eight plasmids. The study shed light on Paraguayan poultry farms as a reservoir of antibiotic resistance commonly conferred via MDR plasmids and showed linkage between resistance and origin of the chickens at the hatcheries level.
- Keywords
- E. coli, ESBL/AmpC, I1 plasmids, K. pneumoniae, colistin,
- Publication type
- Journal Article MeSH
Silver gulls carry phylogenetically diverse Escherichia coli, including globally dominant extraintestinal pathogenic E. coli (ExPEC) sequence types and pandemic ExPEC-ST131 clades; however, our large-scale study (504 samples) on silver gulls nesting off the coast of New South Wales identified E. coli ST457 as the most prevalent. A phylogenetic analysis of whole-genome sequences (WGS) of 138 ST457 samples comprising 42 from gulls, 2 from humans (Australia), and 14 from poultry farmed in Paraguay were compared with 80 WGS deposited in public databases from diverse sources and countries. E. coli ST457 strains are phylogenetic group F, carry fimH145, and partition into five main clades in accordance to predominant flagella H-antigen carriage. Although we identified considerable phylogenetic diversity among the 138 ST457 strains, closely related subclades (<100 SNPs) suggested zoonotic or zooanthroponosis transmission between humans, wild birds, and food-producing animals. Australian human clinical and gull strains in two of the clades were closely related (≤80 SNPs). Regarding plasmid content, country, or country/source, specific connections were observed, including I1/ST23, I1/ST314, and I1/ST315 disseminating blaCMY-2 in Australia, I1/ST113 carrying blaCTX-M-8 and mcr-5 in Paraguayan poultry, and F2:A-:B1 plasmids of Dutch origin being detected across multiple ST457 clades. We identified a high prevalence of nearly identical I1/ST23 plasmids carrying blaCMY-2 among Australian gull and clinical human strains. In summary, ST457 is a broad host range, geographically diverse E. coli lineage that can cause human extraintestinal disease, including urinary tract infection, and displays a remarkable ability to capture mobile elements that carry and transmit genes encoding resistance to critically important antibiotics.
- Keywords
- AmpC, ESBL, ExPEC, I1 plasmids, ST457,
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- beta-Lactamases genetics MeSH
- beta-Lactams MeSH
- Animals, Wild MeSH
- Escherichia coli * genetics MeSH
- Phylogeny MeSH
- Escherichia coli Infections * veterinary MeSH
- Humans MeSH
- Plasmids genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Australia MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- beta-Lactamases MeSH
- beta-Lactams MeSH