Nejvíce citovaný článek - PubMed ID 31998633
Personalized Treatment of H3K27M-Mutant Pediatric Diffuse Gliomas Provides Improved Therapeutic Opportunities
Gliomas are the most common brain tumor type in children and adolescents. To date, diagnosis and therapy monitoring for these tumors rely on magnetic resonance imaging (MRI) and histopathological as well as molecular analyses of tumor tissue. Recently, liquid biopsies (LB) have emerged as promising tool for diagnosis and longitudinal tumor assessment potentially allowing for a more precise therapeutic management. However, the optimal strategy for monitoring gliomas by LB remains to be determined. In this study, we analyzed circulating tumor DNA (ctDNA) from 78 liquid biopsies (plasma n = 44, cerebrospinal fluid n = 34 (CSF)) of 35 glioma patients, determining H3F3A K28M (K27M) and BRAF V600E mutation allele frequency using droplet digital PCR (ddPCR). All results were correlated to clinically relevant parameters including diagnostic imaging and CSF aspiration site (ventricular vs lumbar) with respect to tumor localization. Regarding diagnostic accuracy, the calculated sensitivity score in the H3F3A K27M cohort was 84.61% for CSF and 73.68% for plasma. In the BRAF V600E cohort, we determined a sensitivity of 83.3% in plasma and 80% in CSF. The overall specificity was 100%. With respect to the CSF aspiration, the intra-operatively obtained CSF demonstrated 100% detection rate, followed by ventricular CSF obtained via Ommaya Reservoir/shunt puncture (93%) and CSF obtained via lumbar puncture (66%). Notably, this further correlated with the proximity of the CSF site to tumor localization. Longitudinal CSF monitoring demonstrated a good correlation to clinical and radiological disease evolution. Importantly, we show for the first time that monitoring BRAF V600E by ddPCR could serve as treatment response assessment in gliomas. In summary, our observation may inform recommendations with regard to location of CSF aspiration when incorporating LB into future treatment protocols.
- Klíčová slova
- CSF sampling site, Droplet digital PCR, Glioma, Liquid biopsy, Longitudinal monitoring, Targeted therapy,
- MeSH
- cirkulující nádorová DNA mozkomíšní mok genetika MeSH
- dítě MeSH
- dospělí MeSH
- gliom * genetika patologie diagnóza MeSH
- histony * genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mutace MeSH
- nádorové biomarkery * genetika mozkomíšní mok MeSH
- nádory mozku * genetika diagnóza patologie MeSH
- předškolní dítě MeSH
- protoonkogenní proteiny B-Raf * genetika MeSH
- tekutá biopsie metody MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- BRAF protein, human MeSH Prohlížeč
- cirkulující nádorová DNA MeSH
- H3-3A protein, human MeSH Prohlížeč
- histony * MeSH
- nádorové biomarkery * MeSH
- protoonkogenní proteiny B-Raf * MeSH
Introduction: Pediatric brain tumours (PBT) are one of the most common malignancies during childhood, with variable severity according to the location and histological type. Certain types of gliomas, such a glioblastoma and diffuse intrinsic pontine glioma (DIPG), have a much higher mortality than ependymoma and medulloblastoma. Early detection of PBT is essential for diagnosis and therapeutic interventions. Liquid biopsies have been demonstrated using cerebrospinal fluid (CSF), mostly restricted to cell free DNA, which display limitations of quantity and integrity. In this pilot study, we sought to demonstrate the detectability and robustness of cell free histones in the CSF. Methods: We collected CSF samples from a pilot cohort of 8 children with brain tumours including DIPG, medulloblastoma, glioblastoma, ependymoma and others. As controls, we collected CSF samples from nine children with unrelated blood malignancies and without brain tumours. We applied a multichannel flow imaging approach on ImageStream(X) to image indiviual histone or histone complexes on different channels. Results: Single histones (H2A, macroH2A1.1, macroH2A1.2 H2B, H3, H4 and histone H3 bearing the H3K27M mutation), and histone complexes are specifically detectable in the CSF of PBT patients. H2A and its variants macroH2A1.1/macroH2A1/2 displayed the strongest signal and abundance, together with disease associated H3K27M. In contrast, mostly H4 is detectable in the CSF of pediatric patients with blood malignancies. Discussion: In conclusion, free histones and histone complexes are detectable with a strong signal in the CSF of children affected by brain tumours, using ImageStream(X) technology and may provide additive diagnostic and predictive information.
- Klíčová slova
- epigenetics, histones, imaging, liquid biopsy, pediatric brain tumors,
- Publikační typ
- časopisecké články MeSH