Most cited article - PubMed ID 32037992
DNA barcoding of pear psyllids (Hemiptera: Psylloidea: Psyllidae), a tale of continued misidentifications
Psyllids (Hemiptera: Psylloidea) are plant sap-sucking insects whose identification is often difficult for non-experts. Despite the rapid development of DNA barcoding techniques and their widespread use, only a limited number of sequences of psyllids are available in the public databases, and those that are available are often misidentified. Here, we provide 80 sequences of two mitochondrial genes, cytochrome c oxidase I (COI) and cytochrome b (Cytb), for 25 species of Aphalaridae, mainly from Bulgaria. The DNA barcodes for 15 of these species are published for the first time. In cases where standard primers failed to amplify the target gene fragment, we designed new primers that can be used in future studies. The distance-based thresholds for the analysed species were between 0.0015 and 0.3415 for COI and 0.0771 and 0.4721 for Cytb, indicating that the Cytb gene has a higher interspecific divergence, compared to COI, and therefore allows for more accurate species identification. The species delimitation based on DNA barcodes is largely consistent with the differences resulting from morphological and host plant data, demonstrating that the use of DNA barcodes is suitable for successful identification of most aphalarid species studied. The phylogenetic reconstruction based on maximum likelihood and Bayesian inference analyses, while showing similar results at high taxonomic levels to previously published phylogenies, provides additional information on the placement of aphalarids at the species level. The following five species represent new records for Bulgaria: Agonoscena targionii, Aphalara affinis, Colposcenia aliena, Co. bidentata, and Craspedolepta malachitica. Craspedolepta conspersa is reported for the first time from the Czech Republic, while Agonoscena cisti is reported for the first time from Albania.
- Keywords
- DNA barcoding, distance-based method, phylogeny, psyllids, rapid species identification, sequence database,
- Publication type
- Journal Article MeSH
Psyllids are phloem-feeding insects that can transmit plant pathogens such as phytoplasmas, intracellular bacteria causing numerous plant diseases worldwide. Their microbiomes are essential for insect physiology and may also influence the capacity of vectors to transmit pathogens. Using 16S rRNA gene metabarcoding, we compared the microbiomes of three sympatric psyllid species associated with pear trees in Central Europe. All three species are able to transmit 'Candidatus Phytoplasma pyri', albeit with different efficiencies. Our results revealed potential relationships between insect biology and microbiome composition that varied during psyllid ontogeny and between generations in Cacopsylla pyri and C. pyricola, as well as between localities in C. pyri. In contrast, no variations related to psyllid life cycle and geography were detected in C. pyrisuga. In addition to the primary endosymbiont Carsonella ruddii, we detected another highly abundant endosymbiont (unclassified Enterobacteriaceae). C. pyri and C. pyricola shared the same taxon of Enterobacteriaceae which is related to endosymbionts harboured by other psyllid species from various families. In contrast, C. pyrisuga carried a different Enterobacteriaceae taxon related to the genus Sodalis. Our study provides new insights into host-symbiont interactions in psyllids and highlights the importance of host biology and geography in shaping microbiome structure.
- MeSH
- Enterobacteriaceae genetics MeSH
- Hemiptera * microbiology MeSH
- Insecta MeSH
- Humans MeSH
- Microbiota * genetics MeSH
- Pyrus * MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Symbiosis MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Ribosomal, 16S MeSH