Nejvíce citovaný článek - PubMed ID 32049274
BACKGROUND: Polygenic scores (PGSs) hold the potential to identify patients who respond favorably to specific psychiatric treatments. However, their biological interpretation remains unclear. In this study, we developed pathway-specific PGSs (PSPGSs) for lithium response and assessed their association with clinical lithium response in patients with bipolar disorder. METHODS: Using sets of genes involved in pathways affected by lithium, we developed 9 PSPGSs and evaluated their associations with lithium response in the International Consortium on Lithium Genetics (ConLi+Gen) (N = 2367), with validation in combined PsyCourse (Pathomechanisms and Signatures in the Longitudinal Course of Psychosis) (N = 105) and BipoLife (N = 102) cohorts. The association between each PSPGS and lithium response-defined both as a continuous ALDA score and a categorical outcome (good vs. poor responses)-was evaluated using regression models, with adjustment for confounders. The cutoff for a significant association was p < .05 after multiple testing correction. RESULTS: The PGSs for acetylcholine, GABA (gamma-aminobutyric acid), and mitochondria were associated with response to lithium in both categorical and continuous outcomes. However, the PGSs for calcium channel, circadian rhythm, and GSK (glycogen synthase kinase) were associated only with the continuous outcome. Each score explained 0.29% to 1.91% of the variance in the categorical and 0.30% to 1.54% of the variance in the continuous outcomes. A multivariate model combining PSPGSs that showed significant associations in the univariate analysis (combined PSPGS) increased the percentage of variance explained (R 2) to 3.71% and 3.18% for the categorical and continuous outcomes, respectively. Associations for PGSs for GABA and circadian rhythm were replicated. Patients with the highest genetic loading (10th decile) for acetylcholine variants were 3.03 times more likely (95% CI, 1.95 to 4.69) to show a good lithium response (categorical outcome) than patients with the lowest genetic loading (1st decile). CONCLUSIONS: PSPGSs achieved predictive performance comparable to the conventional genome-wide PGSs, with the added advantage of biological interpretability using a smaller list of genetic variants.
Polygenic scores (PGSs) have the potential to identify patients likely to respond to specific psychiatric treatments, but their biological interpretation remains unclear. In this study, we developed 9 pathway-specific PGSs (PSPGSs) for lithium response by aggregating genetic variants involved in pathways affected by lithium. We assessed their associations with lithium response in the International Consortium on Lithium Genetics (ConLi+Gen) (N = 2367) cohort and validated the findings in the PsyCourse (N = 105) and BipoLife (N = 102) cohorts. Clinical response to lithium treatment was significantly associated with PSPGSs for acetylcholine, GABA (gamma-aminobutyric acid), calcium channel signaling, mitochondria, circadian rhythm, and GSK pathways, with explained variance (R 2) ranging from 0.29% to 1.91%. The combined PSPGS explained up to 3.71% of the variability. Associations for GABA and circadian rhythm PGSs were successfully replicated. In a decile-based analysis, patients with the highest genetic load (10th decile) for acetylcholine pathway variants were 3.03 times more likely to respond well to lithium compared with those in the lowest decile (1st decile). PSPGSs achieved predictive performance comparable to conventional genome-wide PGSs, with better biological interpretability and a more focused set of genetic variants.
- Klíčová slova
- Bipolar disorder, Lithium, Pharmacogenomics, Polygenic score, Psychiatry,
- Publikační typ
- časopisecké články MeSH
Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental health disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N = 2367) and replicated in the combined PsyCourse (N = 89) and BipoLife (N = 102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P < 0.05. Li+PGS was positively associated with lithium treatment response in the ConLi+Gen cohort, in both the categorical (P = 9.8 × 10-12, R2 = 1.9%) and continuous (P = 6.4 × 10-9, R2 = 2.6%) outcomes. Compared to bipolar patients in the 1st decile of the risk distribution, individuals in the 10th decile had 3.47-fold (95%CI: 2.22-5.47) higher odds of responding favorably to lithium. The results were replicated in the independent cohorts for the categorical treatment outcome (P = 3.9 × 10-4, R2 = 0.9%), but not for the continuous outcome (P = 0.13). Gene-based analyses revealed 36 candidate genes that are enriched in biological pathways controlled by glutamate and acetylcholine. Li+PGS may be useful in the development of pharmacogenomic testing strategies by enabling a classification of bipolar patients according to their response to treatment.
- MeSH
- acetylcholin metabolismus MeSH
- antimanika terapeutické užití farmakologie MeSH
- Bayesova věta MeSH
- bipolární porucha * farmakoterapie genetika MeSH
- celogenomová asociační studie metody MeSH
- dospělí MeSH
- jednonukleotidový polymorfismus genetika MeSH
- kohortové studie MeSH
- kyselina glutamová metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- lithium * terapeutické užití farmakologie MeSH
- multifaktoriální dědičnost * genetika MeSH
- sloučeniny lithia terapeutické užití farmakologie MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholin MeSH
- antimanika MeSH
- kyselina glutamová MeSH
- lithium * MeSH
- sloučeniny lithia MeSH
IMPORTANCE: About 20% to 30% of people with schizophrenia have psychotic symptoms that do not respond adequately to first-line antipsychotic treatment. This clinical presentation, chronic and highly disabling, is known as treatment-resistant schizophrenia (TRS). The causes of treatment resistance and their relationships with causes underlying schizophrenia are largely unknown. Adequately powered genetic studies of TRS are scarce because of the difficulty in collecting data from well-characterized TRS cohorts. OBJECTIVE: To examine the genetic architecture of TRS through the reassessment of genetic data from schizophrenia studies and its validation in carefully ascertained clinical samples. DESIGN, SETTING, AND PARTICIPANTS: Two case-control genome-wide association studies (GWASs) of schizophrenia were performed in which the case samples were defined as individuals with TRS (n = 10 501) and individuals with non-TRS (n = 20 325). The differences in effect sizes for allelic associations were then determined between both studies, the reasoning being such differences reflect treatment resistance instead of schizophrenia. Genotype data were retrieved from the CLOZUK and Psychiatric Genomics Consortium (PGC) schizophrenia studies. The output was validated using polygenic risk score (PRS) profiling of 2 independent schizophrenia cohorts with TRS and non-TRS: a prevalence sample with 817 individuals (Cardiff Cognition in Schizophrenia [CardiffCOGS]) and an incidence sample with 563 individuals (Genetics Workstream of the Schizophrenia Treatment Resistance and Therapeutic Advances [STRATA-G]). MAIN OUTCOMES AND MEASURES: GWAS of treatment resistance in schizophrenia. The results of the GWAS were compared with complex polygenic traits through a genetic correlation approach and were used for PRS analysis on the independent validation cohorts using the same TRS definition. RESULTS: The study included a total of 85 490 participants (48 635 [56.9%] male) in its GWAS stage and 1380 participants (859 [62.2%] male) in its PRS validation stage. Treatment resistance in schizophrenia emerged as a polygenic trait with detectable heritability (1% to 4%), and several traits related to intelligence and cognition were found to be genetically correlated with it (genetic correlation, 0.41-0.69). PRS analysis in the CardiffCOGS prevalence sample showed a positive association between TRS and a history of taking clozapine (r2 = 2.03%; P = .001), which was replicated in the STRATA-G incidence sample (r2 = 1.09%; P = .04). CONCLUSIONS AND RELEVANCE: In this GWAS, common genetic variants were differentially associated with TRS, and these associations may have been obscured through the amalgamation of large GWAS samples in previous studies of broadly defined schizophrenia. Findings of this study suggest the validity of meta-analytic approaches for studies on patient outcomes, including treatment resistance.
- MeSH
- celogenomová asociační studie MeSH
- genetická predispozice k nemoci genetika MeSH
- lidé MeSH
- multifaktoriální dědičnost genetika MeSH
- psychotické poruchy * farmakoterapie MeSH
- schizofrenie * diagnóza farmakoterapie genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH