Nejvíce citovaný článek - PubMed ID 32070012
Identifying the Translatome of Mouse NEBD-Stage Oocytes via SSP-Profiling; A Novel Polysome Fractionation Method
Translational regulation is pivotal during preimplantation development. However, how mRNAs are selected for temporal regulation and their dynamic utilization and fate during this period are still unknown. Using a high-resolution ribosome profiling approach, we analyzed the transcriptome, as well as monosome- and polysome-bound RNAs of mouse oocytes and embryos, defining an unprecedented extent of spatiotemporal translational landscapes during this rapid developmental phase. We observed previously unknown mechanisms of translational selectivity, i.e., stage-wise deferral of loading monosome-bound mRNAs to polysome for active translation, continuous translation of both monosome and polysome-bound mRNAs at the same developmental stage, and priming to monosomes after initial activation. We showed that a eukaryotic initiation factor Eif1ad3, which is exclusively translated in the 2-Cell embryo, is required for ribosome biogenesis post embryonic genome activation. Our study thus provides genome-wide datasets and analyses of spatiotemporal translational dynamics accompanying mammalian germ cell and embryonic development and reveals the contribution of a novel translation initiation factor to mammalian pre-implantation development.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
In recent years, numerous evidence has been accumulated about the extent of A-to-I editing in human RNAs and the key role ADAR1 plays in the cellular editing machinery. It has been shown that A-to-I editing occurrence and frequency are tissue-specific and essential for some tissue development, such as the liver. To study the effect of ADAR1 function in hepatocytes, we have created Huh7.5 ADAR1 KO cell lines. Upon IFN treatment, the Huh7.5 ADAR1 KO cells show rapid arrest of growth and translation, from which they do not recover. We analyzed translatome changes by using a method based on sequencing of separate polysome profile RNA fractions. We found significant changes in the transcriptome and translatome of the Huh7.5 ADAR1 KO cells. The most prominent changes include negatively affected transcription by RNA polymerase III and the deregulation of snoRNA and Y RNA levels. Furthermore, we observed that ADAR1 KO polysomes are enriched in mRNAs coding for proteins pivotal in a wide range of biological processes such as RNA localization and RNA processing, whereas the unbound fraction is enriched mainly in mRNAs coding for ribosomal proteins and translational factors. This indicates that ADAR1 plays a more relevant role in small RNA metabolism and ribosome biogenesis.
- Klíčová slova
- ADAR1, RNA editing, Y RNA, hepatocyte, miRNA, snoRNA,
- MeSH
- adenosindeaminasa * genetika metabolismus MeSH
- buněčné linie MeSH
- editace RNA * MeSH
- genový knockout MeSH
- hepatocyty * metabolismus MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- polyribozomy metabolismus genetika MeSH
- proteiny vázající RNA * genetika metabolismus MeSH
- proteosyntéza MeSH
- transkriptom MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ADAR protein, human MeSH Prohlížeč
- adenosindeaminasa * MeSH
- messenger RNA MeSH
- proteiny vázající RNA * MeSH
Mammalian oocyte development depends on the temporally controlled translation of maternal transcripts, particularly in the coordination of meiotic and early embryonic development when transcription has ceased. The translation of mRNA is regulated by various RNA-binding proteins. We show that the absence of cytoplasmic polyadenylation element-binding protein 3 (CPEB3) negatively affects female reproductive fitness. CPEB3-depleted oocytes undergo meiosis normally but experience early embryonic arrest due to a disrupted transcriptome, leading to aberrant protein expression and the subsequent failure of embryonic transcription initiation. We found that CPEB3 stabilizes a subset of mRNAs with a significantly longer 3'UTR that is enriched in its distal region with cytoplasmic polyadenylation elements. Overall, our results suggest that CPEB3 is an important maternal factor that regulates the stability and translation of a subclass of mRNAs that are essential for the initiation of embryonic transcription and thus for embryonic development.
- Klíčová slova
- embryo, mRNA, oocyte, translation,
- MeSH
- 3' nepřekládaná oblast genetika MeSH
- embryonální vývoj genetika MeSH
- meióza genetika MeSH
- messenger RNA genetika metabolismus MeSH
- myši MeSH
- oocyty * metabolismus MeSH
- polyadenylace MeSH
- proteiny vázající RNA * metabolismus genetika MeSH
- stabilita RNA genetika MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3' nepřekládaná oblast MeSH
- Cpeb3 protein, mouse MeSH Prohlížeč
- messenger RNA MeSH
- proteiny vázající RNA * MeSH
Translation is critical for development as transcription in the oocyte and early embryo is silenced. To illustrate the translational changes during meiosis and consecutive two mitoses of the oocyte and early embryo, we performed a genome-wide translatome analysis. Acquired data showed significant and uniform activation of key translational initiation and elongation axes specific to M-phases. Although global protein synthesis decreases in M-phases, translation initiation and elongation activity increases in a uniformly fluctuating manner, leading to qualitative changes in translation regulation via the mTOR1/4F/eEF2 axis. Overall, we have uncovered a highly dynamic and oscillatory pattern of translational reprogramming that contributes to the translational regulation of specific mRNAs with different modes of polysomal occupancy/translation that are important for oocyte and embryo developmental competence. Our results provide new insights into the regulation of gene expression during oocyte meiosis as well as the first two embryonic mitoses and show how temporal translation can be optimized. This study is the first step towards a comprehensive analysis of the molecular mechanisms that not only control translation during early development, but also regulate translation-related networks employed in the oocyte-to-embryo transition and embryonic genome activation.
- MeSH
- embryonální vývoj * MeSH
- meióza MeSH
- messenger RNA genetika metabolismus MeSH
- myši MeSH
- oocyty * cytologie růst a vývoj metabolismus MeSH
- proteosyntéza * MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- messenger RNA MeSH
Preimplantation mouse embryo development involves temporal-spatial specification and segregation of three blastocyst cell lineages: trophectoderm, primitive endoderm and epiblast. Spatial separation of the outer-trophectoderm lineage from the two other inner-cell-mass (ICM) lineages starts with the 8- to 16-cell transition and concludes at the 32-cell stages. Accordingly, the ICM is derived from primary and secondary contributed cells; with debated relative EPI versus PrE potencies. We report generation of primary but not secondary ICM populations is highly dependent on temporal activation of mammalian target of Rapamycin (mTOR) during 8-cell stage M-phase entry, mediated via regulation of the 7-methylguanosine-cap (m7G-cap)-binding initiation complex (EIF4F) and linked to translation of mRNAs containing 5' UTR terminal oligopyrimidine (TOP-) sequence motifs, as knockdown of identified TOP-like motif transcripts impairs generation of primary ICM founders. However, mTOR inhibition-induced ICM cell number deficits in early blastocysts can be compensated by the late blastocyst stage, after inhibitor withdrawal; compensation likely initiated at the 32-cell stage when supernumerary outer cells exhibit molecular characteristics of inner cells. These data identify a novel mechanism specifically governing initial spatial segregation of mouse embryo blastomeres, that is distinct from those directing subsequent inner cell formation, contributing to germane segregation of late blastocyst lineages.
- Klíčová slova
- EIF4EBP1/4EBP1, TOP-motif, cell fate, inner cell mass/ICM and cell positioning, mTOR/mTORC1, preimplantation mouse embryo,
- MeSH
- blastocysta * MeSH
- buněčná diferenciace fyziologie MeSH
- buněčný rodokmen MeSH
- embryo savčí * MeSH
- mTORC1 MeSH
- myši MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mTORC1 MeSH
High-resolution ribosome fractionation and low-input ribosome profiling of bovine oocytes and preimplantation embryos has enabled us to define the translational landscapes of early embryo development at an unprecedented level. We analyzed the transcriptome and the polysome- and non-polysome-bound RNA profiles of bovine oocytes (germinal vesicle and metaphase II stages) and early embryos at the two-cell, eight-cell, morula and blastocyst stages, and revealed four modes of translational selectivity: (1) selective translation of non-abundant mRNAs; (2) active, but modest translation of a selection of highly expressed mRNAs; (3) translationally suppressed abundant to moderately abundant mRNAs; and (4) mRNAs associated specifically with monosomes. A strong translational selection of low-abundance transcripts involved in metabolic pathways and lysosomes was found throughout bovine embryonic development. Notably, genes involved in mitochondrial function were prioritized for translation. We found that translation largely reflected transcription in oocytes and two-cell embryos, but observed a marked shift in the translational control in eight-cell embryos that was associated with the main phase of embryonic genome activation. Subsequently, transcription and translation become more synchronized in morulae and blastocysts. Taken together, these data reveal a unique spatiotemporal translational regulation that accompanies bovine preimplantation development.
- Klíčová slova
- Bovine, Preimplantation embryo development, Ribosome profiling, Transcription, Translation, Translational selectivity,
- MeSH
- blastocysta * metabolismus MeSH
- embryonální vývoj * genetika MeSH
- morula metabolismus MeSH
- oocyty metabolismus MeSH
- ribozomy genetika MeSH
- skot MeSH
- těhotenství MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
In mammalian females, oocytes are stored in the ovary and meiosis is arrested at the diplotene stage of prophase I. When females reach puberty oocytes are selectively recruited in cycles to grow, overcome the meiotic arrest, complete the first meiotic division and become mature (ready for fertilization). At a molecular level, the master regulator of prophase I arrest and meiotic resumption is the maturation-promoting factor (MPF) complex, formed by the active form of cyclin dependent kinase 1 (CDK1) and Cyclin B1. However, we still do not have complete information regarding the factors implicated in MPF activation. In this study we document that out of three mammalian serum-glucocorticoid kinase proteins (SGK1, SGK2, SGK3), mouse oocytes express only SGK1 with a phosphorylated (active) form dominantly localized in the nucleoplasm. Further, suppression of SGK1 activity in oocytes results in decreased CDK1 activation via the phosphatase cell division cycle 25B (CDC25B), consequently delaying or inhibiting nuclear envelope breakdown. Expression of exogenous constitutively active CDK1 can rescue the phenotype induced by SGK1 inhibition. These findings bring new insights into the molecular pathways acting upstream of MPF and a better understanding of meiotic resumption control by presenting a new key player SGK1 in mammalian oocytes.
- Klíčová slova
- CDK1, MPF, Meiosis, Nuclear envelope breakdown, Oocyte, SGK1,
- MeSH
- faktor podporující zrání * metabolismus MeSH
- kontrolní body buněčného cyklu MeSH
- meióza MeSH
- myši MeSH
- oocyty metabolismus MeSH
- profáze meiózy I MeSH
- protein-serin-threoninkinasy genetika MeSH
- proteiny bezprostředně časné * genetika metabolismus MeSH
- savci metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- faktor podporující zrání * MeSH
- protein-serin-threoninkinasy MeSH
- proteiny bezprostředně časné * MeSH
- serum-glucocorticoid regulated kinase MeSH Prohlížeč
Regulation of translation is essential for the diverse biological processes involved in development. Particularly, mammalian oocyte development requires the precisely controlled translation of maternal transcripts to coordinate meiotic and early embryo progression while transcription is silent. It has been recently reported that key components of mRNA translation control are short and long noncoding RNAs (ncRNAs). We found that the ncRNABrain cytoplasmic 1 (BC1) has a role in the fully grown germinal vesicle (GV) mouse oocyte, where is highly expressed in the cytoplasm associated with polysomes. Overexpression of BC1 in GV oocyte leads to a minute decrease in global translation with a significant reduction of specific mRNA translation via interaction with the Fragile X Mental Retardation Protein (FMRP). BC1 performs a repressive role in translation only in the GV stage oocyte without forming FMRP or Poly(A) granules. In conclusion, BC1 acts as the translational repressor of specific mRNAs in the GV stage via its binding to a subset of mRNAs and physical interaction with FMRP. The results reported herein contribute to the understanding of the molecular mechanisms of developmental events connected with maternal mRNA translation.
- Klíčová slova
- Non-coding RNA, development, embryo, oocyte, translation,
- MeSH
- cytoplazma genetika metabolismus MeSH
- myši inbrední ICR MeSH
- myši MeSH
- nekódující RNA genetika MeSH
- oocyty cytologie fyziologie MeSH
- oogeneze * MeSH
- polyribozomy genetika metabolismus MeSH
- proteosyntéza * MeSH
- RNA malá cytoplazmatická genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nekódující RNA MeSH
- RNA malá cytoplazmatická MeSH
Successful specification of the two mouse blastocyst inner cell mass (ICM) lineages (the primitive endoderm (PrE) and epiblast) is a prerequisite for continued development and requires active fibroblast growth factor 4 (FGF4) signaling. Previously, we identified a role for p38 mitogen-activated protein kinases (p38-MAPKs) during PrE differentiation, but the underlying mechanisms have remained unresolved. Here, we report an early blastocyst window of p38-MAPK activity that is required to regulate ribosome-related gene expression, rRNA precursor processing, polysome formation and protein translation. We show that p38-MAPK inhibition-induced PrE phenotypes can be partially rescued by activating the translational regulator mTOR. However, similar PrE phenotypes associated with extracellular signal-regulated kinase (ERK) pathway inhibition targeting active FGF4 signaling are not affected by mTOR activation. These data indicate a specific role for p38-MAPKs in providing a permissive translational environment during mouse blastocyst PrE differentiation that is distinct from classically reported FGF4-based mechanisms.
- MeSH
- blastocysta fyziologie MeSH
- buněčná diferenciace MeSH
- buněčný rodokmen MeSH
- DNA vazebné proteiny fyziologie MeSH
- embryonální vývoj MeSH
- endoderm cytologie MeSH
- mitogenem aktivované proteinkinasy p38 antagonisté a inhibitory fyziologie MeSH
- myši MeSH
- proteiny vázající RNA fyziologie MeSH
- proteosyntéza * MeSH
- TOR serin-threoninkinasy fyziologie MeSH
- transkripční faktory fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- mitogenem aktivované proteinkinasy p38 MeSH
- mTOR protein, mouse MeSH Prohlížeč
- Mybbp1a protein, mouse MeSH Prohlížeč
- proteiny vázající RNA MeSH
- TOR serin-threoninkinasy MeSH
- transkripční faktory MeSH
Fully grown mammalian oocytes store a large amount of RNA synthesized during the transcriptionally active growth stage. A large part of the stored RNA belongs to the long non-coding class which contain either transcriptional noise or important contributors to cellular physiology. Despite the expanding number of studies related to lncRNAs, their influence on oocyte physiology remains enigmatic. We found an oocyte specific antisense, long non-coding RNA, "Rose" (lncRNA in Oocyte Specifically Expressed) expressed in two variants containing two and three non-coding exons, respectively. Rose is localized in the nucleus of transcriptionally active oocyte and in embryo with polysomal occupancy in the cytoplasm. Experimental overexpression of Rose in fully grown oocyte did not show any differences in meiotic maturation. However, knocking down Rose resulted in abnormalities in oocyte cytokinesis and impaired preimplantation embryo development. In conclusion, we have identified an oocyte-specific maternal lncRNA that is essential for successful mammalian oocyte and embryo development.
- Klíčová slova
- Early embryo, LncRNA, Meiosis, Oocyte, Polysome,
- Publikační typ
- časopisecké články MeSH