Most cited article - PubMed ID 32296606
Functional histology of the skin in the subterranean African giant mole-rat: thermal windows are determined solely by pelage characteristics
Subterranean common mole-rats of the genus Fukomys (family Bathyergidae) live in large, cooperatively-breeding families. Odor cues have been hypothesized to play an important role in mediating social behaviors in the underground ecotope, but only little is known about the role of olfactory signaling in burrowing mammals. Here we characterize the so far neglected perioral glands of Fukomys and other African mole-rats as an important source of olfactory social information. Histology demonstrates these structures to be derived sebaceous glands that are developed regardless of sex and reproductive status. However, gland activity is higher in Fukomys males, leading to sexually dimorphic patterns of stain and clotting of the facial pelage. Behavioral assays revealed that conspecifics prefer male but not female perioral swabs over scent samples from the back fur and that male sebum causes similar attraction as anogenital scent, a known source of social information in Fukomys. Finally, we assessed volatile compounds in the perioral sebum of the giant mole-rat (Fukomys mechowii) via GCxGC-MS-based metabolomic profiling. Volatiles display pronounced sex-specific signatures but also allow to differentiate between intrasexual reproductive status groups. These different lines of evidence suggest that mole-rat perioral glands provide complex odor signals which play a crucial role in social communication.
- MeSH
- African People MeSH
- Humans MeSH
- Mole Rats * MeSH
- Reproduction MeSH
- Social Behavior MeSH
- Spalax * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The relatively warm and very humid environment of burrows presents a challenge for thermoregulation of its mammalian inhabitants. It was found that African mole-rats dissipate body heat mainly through their venter, and social mole-rats dissipate more body heat compared to solitary species at lower temperatures. In addition, the pattern of the ventral surface temperature was suggested to be homogeneous in social mole-rats compared to a heterogeneous pattern in solitary mole-rats. To investigate this for subterranean rodents generally, we measured the surface temperatures of seven species with different degrees of sociality, phylogeny, and climate using infrared thermography. In all species, heat dissipation occurred mainly through the venter and the feet. Whereas the feet dissipated body heat at higher ambient temperatures and conserved it at lower ambient temperatures, the ventral surface temperature was relatively high in all temperatures indicating that heat dissipation to the environment through this body region is regulated mainly by behavioural means. Solitary species dissipated less heat through their dorsum than social species, and a tendency for this pattern was observed for the venter. The pattern of heterogeneity of surface temperature through the venter was not related to sociality of the various species. Our results demonstrate a general pattern of body heat exchange through the three studied body regions in subterranean rodents. Besides, isolated individuals of social species are less able to defend themselves against low ambient temperatures, which may handicap them if staying alone for a longer period, such as during and after dispersal events.