Nejvíce citovaný článek - PubMed ID 32543321
Hyper-reactivity of HPA axis in Fischer 344 rats is associated with impaired cardiovascular and behavioral adaptation to repeated restraint stress
Sympathetic hyperactivity and relative NO deficiency are characteristic alterations in both genetic and salt hypertension. The contribution of these abnormalities to blood pressure (BP) maintenance can be determined in conscious rats using a consecutive blockade of particular vasoactive systems. Thus, the contribution of pressor effects of angiotensin II to the maintenance of high BP is usually small, but the role of renin-angiotensin system in the development of hypertension mediated by central and peripheral effects of angiotensin II on sympathetic activity is highly important. This is even true in angiotensin-dependent hypertension of heterozygous Ren-2 transgenic rats in which sympathetic hyperactivity is increasing with age. Central sympathoexcitation in this hypertensive model can be inhibited by lower losartan doses than peripheral angiotensin II-dependent vasoconstriction. This experimental model also yielded important knowledge on nephroprotective effects of new therapeutic drugs - endothelin receptor type A blockers. A considerable part of sympathetic vasoconstriction is dependent on the interaction of Ca2+ sensitization (RhoA/Rho kinase pathway) and Ca2+ influx (through L-VDCC). The blockade of these pathways prevents a major part of sympathetic vasoconstriction. Ca2+ sensitization seems to be attenuated in genetic hypertension in order to compensate increased Ca2+ influx. In contrast, enhanced Ca2+ sensitization is a hallmark of salt sensitivity in Dahl rats in which salt hypertension is dependent on increased Ca2+ influx. The attention should also be paid to the impairment of arterial baroreflex sensitivity which permits enhanced BP responses to pressor or depressor stimuli. Some abnormalities can be studied in blood vessels isolated from hypertensive rats but neither conduit arteries nor mesenteric resistance arteries represent the vascular beds decisive for the increased peripheral resistance and high BP. Keywords: Sympathetic vasoconstriction, NO-dependent vasodilatation, Calcium sensitization, Calcium influx, Arterial baroreflex, Spontaneously hypertensive rats, Salt hypertensive Dahl rats, Ren-2 transgenic rats, RAS blockade, SNS blockade, NOS inhibition, Endothelin, Vascular contraction and relaxation, Isolated conduit and resistance arteries, EDCF, PGI2, BKCa channels.
- MeSH
- hypertenze * patofyziologie metabolismus MeSH
- krevní tlak fyziologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- renin-angiotensin systém fyziologie MeSH
- sympatický nervový systém * patofyziologie metabolismus MeSH
- vazodilatace * fyziologie účinky léků MeSH
- vazokonstrikce * fyziologie účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
We hypothesized that sympathetic hyperactivity and parasympathetic insuficiency in spontaneously hypertensive rats (SHR) underlie their exaggerated cardiovascular response to acute stress and impaired adaptation to repeated restraint stress exposure compared to Wistar-Kyoto rats (WKY). Cardiovascular responses to single (120 min) or repeated (daily 120 min for 1 week) restraint were measured by radiotelemetry and autonomic balance was evaluated by power spectral analysis of systolic blood pressure variability (SBPV) and heart rate variability (HRV). Baroreflex sensitivity (BRS) was measured by the pharmacological Oxford technique. Stress-induced pressor response and vascular sympathetic activity (low-frequency component of SBPV) were enhanced in SHR subjected to single restraint compared to WKY, whereas stress-induced tachycardia was similar in both strains. SHR exhibited attenuated cardiac parasympathetic activity (high-frequency component of HRV) and blunted BRS compared to WKY. Repeated restraint did not affect the stress-induced increase in blood pressure. However, cardiovascular response during the post-stress recovery period of the 7th restraint was reduced in both strains. The repeatedly restrained SHR showed lower basal heart rate during the dark (active) phase and slightly decreased basal blood pressure during the light phase compared to stress-naive SHR. SHR subjected to repeated restraint also exhibited attenuated stress-induced tachycardia, augmented cardiac parasympathetic activity, attenuated vascular sympathetic activity and improved BRS during the last seventh restraint compared to single-stressed SHR. Thus, SHR exhibited enhanced cardiovascular and sympathetic responsiveness to novel stressor exposure (single restraint) compared to WKY. Unexpectedly, the adaptation of cardiovascular and autonomic responses to repeated restraint was more effective in SHR.
- Klíčová slova
- Adaptation, Adrenal glands, Habituation, Hypertension, Restraint stress,
- MeSH
- autonomní nervový systém * patofyziologie MeSH
- baroreflex * fyziologie MeSH
- fyzické omezení * MeSH
- fyziologická adaptace * fyziologie MeSH
- hypertenze * patofyziologie MeSH
- krevní tlak * fyziologie MeSH
- krysa rodu Rattus MeSH
- potkani inbrední SHR * MeSH
- potkani inbrední WKY * MeSH
- psychický stres patofyziologie MeSH
- srdeční frekvence * fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH