Nejvíce citovaný článek - PubMed ID 32725849
What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group
Bipolar disorder is a leading contributor to the global burden of disease1. Despite high heritability (60-80%), the majority of the underlying genetic determinants remain unknown2. We analysed data from participants of European, East Asian, African American and Latino ancestries (n = 158,036 cases with bipolar disorder, 2.8 million controls), combining clinical, community and self-reported samples. We identified 298 genome-wide significant loci in the multi-ancestry meta-analysis, a fourfold increase over previous findings3, and identified an ancestry-specific association in the East Asian cohort. Integrating results from fine-mapping and other variant-to-gene mapping approaches identified 36 credible genes in the aetiology of bipolar disorder. Genes prioritized through fine-mapping were enriched for ultra-rare damaging missense and protein-truncating variations in cases with bipolar disorder4, highlighting convergence of common and rare variant signals. We report differences in the genetic architecture of bipolar disorder depending on the source of patient ascertainment and on bipolar disorder subtype (type I or type II). Several analyses implicate specific cell types in the pathophysiology of bipolar disorder, including GABAergic interneurons and medium spiny neurons. Together, these analyses provide additional insights into the genetic architecture and biological underpinnings of bipolar disorder.
- MeSH
- běloch MeSH
- běloši genetika MeSH
- bipolární porucha * genetika klasifikace patologie patofyziologie MeSH
- celogenomová asociační studie MeSH
- černoši nebo Afroameričané genetika MeSH
- fenotyp MeSH
- genetická predispozice k nemoci MeSH
- genomika * MeSH
- Hispánci a Latinoameričané genetika MeSH
- kohortové studie MeSH
- lidé MeSH
- mapování chromozomů MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
BACKGROUND: Obesity is highly prevalent and disabling, especially in individuals with severe mental illness including bipolar disorders (BD). The brain is a target organ for both obesity and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact. METHODS: We obtained body mass index (BMI) and MRI-derived regional cortical thickness, surface area from 1231 BD and 1601 control individuals from 13 countries within the ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on brain structure using mixed effects and tested for interaction and mediation. We also investigated the impact of medications on the BMI-related associations. RESULTS: BMI and BD additively impacted the structure of many of the same brain regions. Both BMI and BD were negatively associated with cortical thickness, but not surface area. In most regions the number of jointly used psychiatric medication classes remained associated with lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a third of the negative association between number of jointly used psychiatric medications and cortical thickness was mediated by association between the number of medications and higher BMI. CONCLUSIONS: We confirmed consistent associations between higher BMI and lower cortical thickness, but not surface area, across the cerebral mantle, in regions which were also associated with BD. Higher BMI in people with BD indicated more pronounced brain alterations. BMI is important for understanding the neuroanatomical changes in BD and the effects of psychiatric medications on the brain.
- Klíčová slova
- Body mass index, antipsychotics, bipolar disorders, cortical thickness, heterogeneity, lithium, obesity, surface area,
- MeSH
- bipolární porucha * patologie diagnostické zobrazování MeSH
- dospělí MeSH
- index tělesné hmotnosti * MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mozková kůra * diagnostické zobrazování patologie MeSH
- obezita * patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
BACKGROUND: The clinical effects of smartphone-based interventions for bipolar disorder (BD) have yet to be established. OBJECTIVES: To examine the efficacy of smartphone-based interventions in BD and how the included studies reported user-engagement indicators. METHODS: We conducted a systematic search on January 24, 2022, in PubMed, Scopus, Embase, APA PsycINFO, and Web of Science. We used random-effects meta-analysis to calculate the standardized difference (Hedges' g) in pre-post change scores between smartphone intervention and control conditions. The study was pre-registered with PROSPERO (CRD42021226668). RESULTS: The literature search identified 6034 studies. Thirteen articles fulfilled the selection criteria. We included seven RCTs and performed meta-analyses comparing the pre-post change in depressive and (hypo)manic symptom severity, functioning, quality of life, and perceived stress between smartphone interventions and control conditions. There was significant heterogeneity among studies and no meta-analysis reached statistical significance. Results were also inconclusive regarding affective relapses and psychiatric readmissions. All studies reported positive user-engagement indicators. CONCLUSION: We did not find evidence to support that smartphone interventions may reduce the severity of depressive or manic symptoms in BD. The high heterogeneity of studies supports the need for expert consensus to establish ideally how studies should be designed and the use of more sensitive outcomes, such as affective relapses and psychiatric hospitalizations, as well as the quantification of mood instability. The ISBD Big Data Task Force provides preliminary recommendations to reduce the heterogeneity and achieve more valid evidence in the field.
- Klíčová slova
- bipolar disorder, efficacy, engagement, smartphone interventions, task force,
- MeSH
- big data MeSH
- bipolární porucha * psychologie MeSH
- chytrý telefon * MeSH
- kvalita života MeSH
- lidé MeSH
- recidiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- systematický přehled MeSH
Individuals with bipolar disorders (BD) frequently suffer from obesity, which is often associated with neurostructural alterations. Yet, the effects of obesity on brain structure in BD are under-researched. We obtained MRI-derived brain subcortical volumes and body mass index (BMI) from 1134 BD and 1601 control individuals from 17 independent research sites within the ENIGMA-BD Working Group. We jointly modeled the effects of BD and BMI on subcortical volumes using mixed-effects modeling and tested for mediation of group differences by obesity using nonparametric bootstrapping. All models controlled for age, sex, hemisphere, total intracranial volume, and data collection site. Relative to controls, individuals with BD had significantly higher BMI, larger lateral ventricular volume, and smaller volumes of amygdala, hippocampus, pallidum, caudate, and thalamus. BMI was positively associated with ventricular and amygdala and negatively with pallidal volumes. When analyzed jointly, both BD and BMI remained associated with volumes of lateral ventricles and amygdala. Adjusting for BMI decreased the BD vs control differences in ventricular volume. Specifically, 18.41% of the association between BD and ventricular volume was mediated by BMI (Z = 2.73, p = 0.006). BMI was associated with similar regional brain volumes as BD, including lateral ventricles, amygdala, and pallidum. Higher BMI may in part account for larger ventricles, one of the most replicated findings in BD. Comorbidity with obesity could explain why neurostructural alterations are more pronounced in some individuals with BD. Future prospective brain imaging studies should investigate whether obesity could be a modifiable risk factor for neuroprogression.