Nejvíce citovaný článek - PubMed ID 32927737
Truncated PPM1D Prevents Apoptosis in the Murine Thymus and Promotes Ionizing Radiation-Induced Lymphoma
Oncogene-induced replication stress has been recognized as a major cause of genome instability in cancer cells. Increased expression of cyclin E1 caused by amplification of the CCNE1 gene is a common cause of replication stress in various cancers. Protein phosphatase magnesium-dependent 1 delta (PPM1D) is a negative regulator of p53 and has been implicated in termination of the cell cycle checkpoint. Amplification of the PPM1D gene or frameshift mutations in its final exon promote tumorigenesis. Here, we show that PPM1D activity further increases the replication stress caused by overexpression of cyclin E1. In particular, we demonstrate that cells expressing a truncated mutant of PPM1D progress faster from G1 to S phase and fail to complete licensing of the replication origins. In addition, we show that transcription-replication collisions and replication fork slowing caused by CCNE1 overexpression are exaggerated in cells expressing the truncated PPM1D. Finally, replication speed and accumulation of focal DNA copy number alterations caused by induction of CCNE1 expression was rescued by pharmacological inhibition of PPM1D. We propose that increased activity of PPM1D suppresses the checkpoint function of p53 and thus promotes genome instability in cells expressing the CCNE1 oncogene.
- Klíčová slova
- PPM1D phosphatase, cancer, cell cycle, cyclin E1, replication stress,
- MeSH
- cyklin E genetika metabolismus MeSH
- lidé MeSH
- nádorový supresorový protein p53 * genetika metabolismus MeSH
- nádory * MeSH
- nestabilita genomu MeSH
- proteinfosfatasa 2C genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cyklin E MeSH
- nádorový supresorový protein p53 * MeSH
- PPM1D protein, human MeSH Prohlížeč
- proteinfosfatasa 2C MeSH
Hematopoietic stem cells (HSCs) ensure blood cell production during the life-time of an organism, and to do so they need to balance self-renewal, proliferation, differentiation, and migration in a steady state as well as in response to stress or injury. Importantly, aberrant proliferation of HSCs leads to hematological malignancies, and thus, tight regulation by various tumor suppressor pathways, including p53, is essential. Protein phosphatase magnesium-dependent 1 delta (PPM1D) is a negative regulator of p53 and promotes cell survival upon induction of genotoxic stress. Truncating mutations in the last exon of PPM1D lead to the production of a stable, enzymatically active protein and are commonly associated with clonal hematopoiesis. Using a transgenic mouse model, we demonstrate that truncated PPM1D reduces self-renewal of HSCs in basal conditions but promotes the development of aggressive AML after exposure to ionizing radiation. Inhibition of PPM1D suppressed the colony growth of leukemic stem and progenitor cells carrying the truncated PPM1D, and remarkably, it provided protection against irradiation-induced cell growth. Altogether, we demonstrate that truncated PPM1D affects HSC maintenance, disrupts normal hematopoiesis, and that its inhibition could be beneficial in the context of therapy-induced AML.
- MeSH
- akutní myeloidní leukemie * genetika MeSH
- mutace MeSH
- myši MeSH
- nádorový supresorový protein p53 * genetika MeSH
- poškození DNA MeSH
- proliferace buněk MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nádorový supresorový protein p53 * MeSH
- Ppm1d protein, mouse MeSH Prohlížeč