Most cited article - PubMed ID 32933264
Committee neural network potentials control generalization errors and enable active learning
Although machine learning potentials have recently had a substantial impact on molecular simulations, the construction of a robust training set can still become a limiting factor, especially due to the requirement of a reference ab initio simulation that covers all the relevant geometries of the system. Recognizing that this can be prohibitive for certain systems, we develop the method of transition tube sampling that mitigates the computational cost of training set and model generation. In this approach, we generate classical or quantum thermal geometries around a transition path describing a conformational change or a chemical reaction using only a sparse set of local normal mode expansions along this path and select from these geometries by an active learning protocol. This yields a training set with geometries that characterize the whole transition without the need for a costly reference trajectory. The performance of the method is evaluated on different molecular systems with the complexity of the potential energy landscape increasing from a single minimum to a double proton-transfer reaction with high barriers. Our results show that the method leads to training sets that give rise to models applicable in classical and path integral simulations alike that are on par with those based directly on ab initio calculations while providing the computational speedup we have come to expect from machine learning potentials.
- Publication type
- Journal Article MeSH
Simulation techniques based on accurate and efficient representations of potential energy surfaces are urgently needed for the understanding of complex systems such as solid-liquid interfaces. Here we present a machine learning framework that enables the efficient development and validation of models for complex aqueous systems. Instead of trying to deliver a globally optimal machine learning potential, we propose to develop models applicable to specific thermodynamic state points in a simple and user-friendly process. After an initial ab initio simulation, a machine learning potential is constructed with minimum human effort through a data-driven active learning protocol. Such models can afterward be applied in exhaustive simulations to provide reliable answers for the scientific question at hand or to systematically explore the thermal performance of ab initio methods. We showcase this methodology on a diverse set of aqueous systems comprising bulk water with different ions in solution, water on a titanium dioxide surface, and water confined in nanotubes and between molybdenum disulfide sheets. Highlighting the accuracy of our approach with respect to the underlying ab initio reference, the resulting models are evaluated in detail with an automated validation protocol that includes structural and dynamical properties and the precision of the force prediction of the models. Finally, we demonstrate the capabilities of our approach for the description of water on the rutile titanium dioxide (110) surface to analyze the structure and mobility of water on this surface. Such machine learning models provide a straightforward and uncomplicated but accurate extension of simulation time and length scales for complex systems.
- Keywords
- aqueous phase, machine learning potentials, solid–liquid systems,
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH