Nejvíce citovaný článek - PubMed ID 33039165
This paper proposes a fault-tolerant control (FTC) strategy using the current space vectors to diagnose sensor failures and enhance the sustained operation of a field-oriented (FO) controlled induction motor drive (IMD). Three space vectors are established for the sensor fault diagnosis technique, including one converted from the measured currents and the other two calculated from the current estimation technique, respectively, measured and with reference speeds. A mixed mathematical model using three space vectors and their components is proposed to accurately determine the fault condition of each sensor in the motor drive. After determining the operating status of each sensor, if the sensor signal is in good condition, the feedback signal to the controller will be the measured signal; otherwise, the estimated signal will be used instead of the failed signal. Failure states of the various sensors were simulated to check the effectiveness of the proposed technique in the Matlab/Simulink environment. The simulation results are positive: the IMD system applying the proposed FTC technique accurately detected the failed sensor and maintained stability during the operation.
- Klíčová slova
- current space vector, estimated signal, fault-tolerant control, induction motor, sensor failure diagnosis,
- Publikační typ
- časopisecké články MeSH
A novel diagnosis method based on the rotor slip is proposed in the paper to correctly detect current and speed sensor failures during the induction motor drive (IMD) operation. In order to enhance reliability and avoid confusion in the diagnosis algorithm due to the influence of measured signal quality, each fault type is determined in a priority order defined by the diagnosis method. Based on the features of the IMD applying the field-oriented control (FOC) technique, an innovative model uses the measured currents and reference speed as the input signals to estimate the rotor slip for the current sensor fault detection. After verifying the quality of the feedback of the current signals, a speed sensor fault function is continued, and performs according to relations among the reference speed, estimated speed based on the sliding mode method, and measured rotor speeds. Finally, the estimated quantities are selected to replace the wrong measured current or speed signals. The feasibility of the proposed approach is verified by simulations using Matlab-Simulink software as well as by practical experiments using an IMD prototype with a rated power of 2.2 kW and a DSC-TMS320F28335-based control system. The obtained simulation and experimental results demonstrated the feasibility, effectiveness, and reliability of the proposed diagnosis technique in detecting sensor failures and maintaining the stable operation of the IMD.
- Klíčová slova
- FOC, current sensorless, fault diagnosis, fault-tolerant control, speed sensorless,
- MeSH
- počítačová simulace MeSH
- reprodukovatelnost výsledků * MeSH
- Publikační typ
- časopisecké články MeSH