Most cited article - PubMed ID 33301315
Azanitrile Inhibitors of the SmCB1 Protease Target Are Lethal to Schistosoma mansoni: Structural and Mechanistic Insights into Chemotype Reactivity
Schistosomiasis, caused by a parasitic blood fluke of the genus Schistosoma, is a global health problem for which new chemotherapeutic options are needed. We explored the scaffold of gallinamide A, a natural peptidic metabolite of marine cyanobacteria that has previously been shown to inhibit cathepsin L-type proteases. We screened a library of 19 synthetic gallinamide A analogs and identified nanomolar inhibitors of the cathepsin B-type protease SmCB1, which is a drug target for the treatment of schistosomiasis mansoni. Against cultured S. mansoni schistosomula and adult worms, many of the gallinamides generated a range of deleterious phenotypic responses. Imaging with a fluorescent-activity-based probe derived from gallinamide A demonstrated that SmCB1 is the primary target for gallinamides in the parasite. Furthermore, we solved the high-resolution crystal structures of SmCB1 in complex with gallinamide A and its two analogs and describe the acrylamide covalent warhead and binding mode in the active site. Quantum chemical calculations evaluated the contribution of individual positions in the peptidomimetic scaffold to the inhibition of the target and demonstrated the importance of the P1' and P2 positions. Our study introduces gallinamides as a powerful chemotype that can be exploited for the development of novel antischistosomal chemotherapeutics.
- Keywords
- Schistosoma mansoni, acrylamide inhibitor, cathepsin B, cysteine protease, drug target, parasite,
- MeSH
- Cathepsin B * antagonists & inhibitors metabolism MeSH
- Crystallography, X-Ray MeSH
- Models, Molecular MeSH
- Schistosoma mansoni * enzymology drug effects MeSH
- Schistosomicides pharmacology chemistry MeSH
- Protein Binding MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cathepsin B * MeSH
- Schistosomicides MeSH
Cathepsin K (CatK) is a target for the treatment of osteoporosis, arthritis, and bone metastasis. Peptidomimetics with a cyanohydrazide warhead represent a new class of highly potent CatK inhibitors; however, their binding mechanism is unknown. We investigated two model cyanohydrazide inhibitors with differently positioned warheads: an azadipeptide nitrile Gü1303 and a 3-cyano-3-aza-β-amino acid Gü2602. Crystal structures of their covalent complexes were determined with mature CatK as well as a zymogen-like activation intermediate of CatK. Binding mode analysis, together with quantum chemical calculations, revealed that the extraordinary picomolar potency of Gü2602 is entropically favoured by its conformational flexibility at the nonprimed-primed subsites boundary. Furthermore, we demonstrated by live cell imaging that cyanohydrazides effectively target mature CatK in osteosarcoma cells. Cyanohydrazides also suppressed the maturation of CatK by inhibiting the autoactivation of the CatK zymogen. Our results provide structural insights for the rational design of cyanohydrazide inhibitors of CatK as potential drugs.
- Keywords
- Cathepsin K, azadipeptide nitrile, cyanohydrazide warhead, protease inhibitor, structure,
- MeSH
- Hydrazines chemistry pharmacology MeSH
- Protease Inhibitors chemistry pharmacology MeSH
- Cathepsin K antagonists & inhibitors metabolism MeSH
- Humans MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Tumor Cells, Cultured MeSH
- Nitriles chemistry pharmacology MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- CTSK protein, human MeSH Browser
- Hydrazines MeSH
- Protease Inhibitors MeSH
- Cathepsin K MeSH
- Nitriles MeSH
BACKGROUND: The blood flukes of genus Schistosoma are the causative agent of schistosomiasis, a parasitic disease that infects more than 200 million people worldwide. Proteases of schistosomes are involved in critical steps of host-parasite interactions and are promising therapeutic targets. We recently identified and characterized a group of S1 family Schistosoma mansoni serine proteases, including SmSP1 to SmSP5. Expression levels of some SmSPs in S. mansoni are low, and by standard genome sequencing technologies they are marginally detectable at the method threshold levels. Here, we report their spatial gene expression patterns in adult S. mansoni by the high-sensitivity localization assay. METHODOLOGY: Highly sensitive fluorescence in situ RNA hybridization (FISH) was modified and used for the localization of mRNAs encoding individual SmSP proteases (including low-expressed SmSPs) in tissues of adult worms. High sensitivity was obtained due to specifically prepared tissue and probes in combination with the employment of a signal amplification approach. The assay method was validated by detecting the expression patterns of a set of relevant reference genes including SmCB1, SmPOP, SmTSP-2, and Sm29 with localization formerly determined by other techniques. RESULTS: FISH analysis revealed interesting expression patterns of SmSPs distributed in multiple tissues of S. mansoni adults. The expression patterns of individual SmSPs were distinct but in part overlapping and were consistent with existing transcriptome sequencing data. The exception were genes with significantly low expression, which were also localized in tissues where they had not previously been detected by RNA sequencing methods. In general, SmSPs were found in various tissues including reproductive organs, parenchymal cells, esophagus, and the tegumental surface. CONCLUSIONS: The FISH-based assay provided spatial information about the expression of five SmSPs in adult S. mansoni females and males. This highly sensitive method allowed visualization of low-abundantly expressed genes that are below the detection limits of standard in situ hybridization or by RNA sequencing. Thus, this technical approach turned out to be suitable for sensitive localization studies and may also be applicable for other trematodes. The results suggest that SmSPs may play roles in diverse processes of the parasite. Certain SmSPs expressed at the surface may be involved in host-parasite interactions.
- Keywords
- Blood fluke, Fluorescence RNA in situ hybridization, Platyhelminthes, Schistosoma mansoni, Serine proteases, Transcript, mRNA detection,
- MeSH
- Gene Expression * MeSH
- In Situ Hybridization, Fluorescence methods standards MeSH
- Helminth Proteins genetics MeSH
- RNA metabolism MeSH
- Schistosoma mansoni enzymology genetics MeSH
- Serine Proteases genetics MeSH
- Gene Expression Profiling MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Helminth Proteins MeSH
- RNA MeSH
- Serine Proteases MeSH