Azanitrile Inhibitors of the SmCB1 Protease Target Are Lethal to Schistosoma mansoni: Structural and Mechanistic Insights into Chemotype Reactivity
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R21 AI126296
NIAID NIH HHS - United States
PubMed
33301315
PubMed Central
PMC7802074
DOI
10.1021/acsinfecdis.0c00644
Knihovny.cz E-resources
- Keywords
- azapeptide inhibitors, cysteine proteases, protein structures, schistosomiasis, structure−activity relationships,
- MeSH
- Cathepsin B MeSH
- Peptide Hydrolases * MeSH
- Schistosoma mansoni * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Cathepsin B MeSH
- Peptide Hydrolases * MeSH
Azapeptide nitriles are postulated to reversibly covalently react with the active-site cysteine residue of cysteine proteases and form isothiosemicarbazide adducts. We investigated the interaction of azadipeptide nitriles with the cathepsin B1 drug target (SmCB1) from Schistosoma mansoni, a pathogen that causes the global neglected disease schistosomiasis. Azadipeptide nitriles were superior inhibitors of SmCB1 over their parent carba analogs. We determined the crystal structure of SmCB1 in complex with an azadipeptide nitrile and analyzed the reaction mechanism using quantum chemical calculations. The data demonstrate that azadipeptide nitriles, in contrast to their carba counterparts, undergo a change from E- to Z-configuration upon binding, which gives rise to a highly favorable energy profile of noncovalent and covalent complex formation. Finally, azadipeptide nitriles were considerably more lethal than their carba analogs against the schistosome pathogen in culture, supporting the further development of this chemotype as a treatment for schistosomiasis.
See more in PubMed
Chingle R.; Proulx C.; Lubell W. D. (2017) Azapeptide Synthesis Methods for Expanding Side-Chain Diversity for Biomedical Applications. Acc. Chem. Res. 50 (7), 1541–1556. 10.1021/acs.accounts.7b00114. PubMed DOI
Proulx C.; Sabatino D.; Hopewell R.; Spiegel J.; Garcia Ramos Y.; Lubell W. D. (2011) Azapeptides and their therapeutic potential. Future Med. Chem. 3 (9), 1139–64. 10.4155/fmc.11.74. PubMed DOI
Verhelst S. H.; Witte M. D.; Arastu-Kapur S.; Fonovic M.; Bogyo M. (2006) Novel aza peptide inhibitors and active-site probes of papain-family cysteine proteases. ChemBioChem 7 (6), 943–950. 10.1002/cbic.200600001. PubMed DOI
Mir F. M.; Atmuri N. D. P.; Bourguet C. B.; Fores J. R.; Hou X.; Chemtob S.; Lubell W. D. (2019) Paired Utility of Aza-Amino Acyl Proline and Indolizidinone Amino Acid Residues for Peptide Mimicry: Conception of Prostaglandin F2alpha Receptor Allosteric Modulators That Delay Preterm Birth. J. Med. Chem. 62 (9), 4500–4525. 10.1021/acs.jmedchem.9b00056. PubMed DOI
Sexton K. B.; Kato D.; Berger A. B.; Fonovic M.; Verhelst S. H.; Bogyo M. (2007) Specificity of aza-peptide electrophile activity-based probes of caspases. Cell Death Differ. 14 (4), 727–32. 10.1038/sj.cdd.4402074. PubMed DOI
Löser R.; Frizler M.; Schilling K.; Gütschow M. (2008) Azadipeptide nitriles: highly potent and proteolytically stable inhibitors of papain-like cysteine proteases. Angew. Chem., Int. Ed. 47 (23), 4331–4334. 10.1002/anie.200705858. PubMed DOI
Frizler M.; Lohr F.; Furtmann N.; Kläs J.; Gütschow M. (2011) Structural optimization of azadipeptide nitriles strongly increases association rates and allows the development of selective cathepsin inhibitors. J. Med. Chem. 54 (1), 396–400. 10.1021/jm101272p. PubMed DOI
Frizler M.; Lohr F.; Lülsdorff M.; Gütschow M. (2011) Facing the gem-dialkyl effect in enzyme inhibitor design: preparation of homocycloleucine-based azadipeptide nitriles. Chem. - Eur. J. 17 (41), 11419–23. 10.1002/chem.201101350. PubMed DOI
Frizler M.; Schmitz J.; Schulz-Fincke A. C.; Gütschow M. (2012) Selective nitrile inhibitors to modulate the proteolytic synergism of cathepsins S and F. J. Med. Chem. 55 (12), 5982–6. 10.1021/jm300734k. PubMed DOI
Yang P. Y.; Wang M.; Li L.; Wu H.; He C. Y.; Yao S. Q. (2012) Design, synthesis and biological evaluation of potent azadipeptide nitrile inhibitors and activity-based probes as promising anti-Trypanosoma brucei agents. Chem. - Eur. J. 18 (21), 6528–41. 10.1002/chem.201103322. PubMed DOI
Loh Y.; Shi H.; Hu M.; Yao S. Q. (2010) Click” synthesis of small molecule-peptide conjugates for organelle-specific delivery and inhibition of lysosomal cysteine proteases. Chem. Commun. (Cambridge, U. K.) 46 (44), 8407–9. 10.1039/c0cc03738a. PubMed DOI
Löser R.; Bergmann R.; Frizler M.; Mosch B.; Dombrowski L.; Kuchar M.; Steinbach J.; Gütschow M.; Pietzsch J. (2013) Synthesis and radiopharmacological characterisation of a fluorine-18-labelled azadipeptide nitrile as a potential PET tracer for in vivo imaging of cysteine cathepsins. ChemMedChem 8 (8), 1330–44. 10.1002/cmdc.201300135. PubMed DOI
Van Kersavond T.; Nguyen M. T. N.; Verhelst S. H. L. (2017) Synthesis and Application of Activity-Based Probes for Proteases. Methods Mol. Biol. 1574, 255–266. 10.1007/978-1-4939-6850-3_19. PubMed DOI
Tan M. S. Y.; Davison D.; Sanchez M. I.; Anderson B. M.; Howell S.; Snijders A.; Edgington-Mitchell L. E.; Deu E. (2020) Novel broad-spectrum activity-based probes to profile malarial cysteine proteases. PLoS One 15 (1), e022734110.1371/journal.pone.0227341. PubMed DOI PMC
Deu E. (2017) Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation. FEBS J. 284 (16), 2604–2628. 10.1111/febs.14130. PubMed DOI PMC
Boudreau P. D.; Miller B. W.; McCall L. I.; Almaliti J.; Reher R.; Hirata K.; Le T.; Siqueira-Neto J. L.; Hook V.; Gerwick W. H. (2019) Design of Gallinamide A Analogs as Potent Inhibitors of the Cysteine Proteases Human Cathepsin L and Trypanosoma cruzi Cruzain. J. Med. Chem. 62 (20), 9026–9044. 10.1021/acs.jmedchem.9b00294. PubMed DOI PMC
Ettari R.; Previti S.; Maiorana S.; Amendola G.; Wagner A.; Cosconati S.; Schirmeister T.; Hellmich U. A.; Zappala M. (2019) Optimization Strategy of Novel Peptide-Based Michael Acceptors for the Treatment of Human African Trypanosomiasis. J. Med. Chem. 62 (23), 10617–10629. 10.1021/acs.jmedchem.9b00908. PubMed DOI
Ettari R., Previti S., Di Chio C., and Zappala M. (2020) Falcipain-2 and falcipain-3 inhibitors as promising antimalarial agents. Curr. Med. Chem.,10.2174/0929867327666200730215316. PubMed DOI
Sajid M.; McKerrow J. H.; Hansell E.; Mathieu M. A.; Lucas K. D.; Hsieh I.; Greenbaum D.; Bogyo M.; Salter J. P.; Lim K. C.; Franklin C.; Kim J. H.; Caffrey C. R. (2003) Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase. Mol. Biochem. Parasitol. 131 (1), 65–75. 10.1016/S0166-6851(03)00194-4. PubMed DOI
Jílková A.; Řezáčová P.; Lepšík M.; Horn M.; Váchová J.; Fanfrlík J.; Brynda J.; McKerrow J. H.; Caffrey C. R.; Mareš M. (2011) Structural Basis for Inhibition of Cathepsin B Drug Target from the Human Blood Fluke, Schistosoma mansoni. J. Biol. Chem. 286 (41), 35770–35781. 10.1074/jbc.M111.271304. PubMed DOI PMC
Colley D. G.; Bustinduy A. L.; Secor W. E.; King C. H. (2014) Human schistosomiasis. Lancet 383 (9936), 2253–2264. 10.1016/S0140-6736(13)61949-2. PubMed DOI PMC
Caffrey C. R. (2007) Chemotherapy of schistosomiasis: present and future. Curr. Opin. Chem. Biol. 11 (4), 433–439. 10.1016/j.cbpa.2007.05.031. PubMed DOI
Caffrey C. R.; Secor W. E. (2011) Schistosomiasis: from drug deployment to drug development. Curr. Opin. Infect. Dis. 24 (5), 410–417. 10.1097/QCO.0b013e328349156f. PubMed DOI
Thetiot-Laurent S. A.; Boissier J.; Robert A.; Meunier B. (2013) Schistosomiasis chemotherapy. Angew. Chem., Int. Ed. 52 (31), 7936–7956. 10.1002/anie.201208390. PubMed DOI
Caffrey C. R., El-Sakkary N., Mäder P., Krieg R., Becker K., Schlitzer M., Drewry D. H., Vennerstrom J. L., and Grevelding C. G. (2019) Drug Discovery and Development for Schistosomiasis. In Neglected Tropical Diseases (Swinney D., Pollastri M., Mannhold R., Buschmann H., and Holenz J., Eds.), Wiley, Weinheim, Germany.
Abdulla M. H.; Lim K. C.; Sajid M.; McKerrow J. H.; Caffrey C. R. (2007) Schistosomiasis mansoni: novel chemotherapy using a cysteine protease inhibitor. PLoS Med. 4 (1), e1410.1371/journal.pmed.0040014. PubMed DOI PMC
Horn M.; Jílková A.; Vondrášek J.; Marešová L.; Caffrey C. R.; Mareš M. (2011) Mapping the Pro-Peptide of the Schistosoma mansoni Cathepsin B1 Drug Target: Modulation of Inhibition by Heparin and Design of Mimetic Inhibitors. ACS Chem. Biol. 6 (6), 609–617. 10.1021/cb100411v. PubMed DOI
Jílková A.; Horn M.; Řezáčová P.; Marešová L.; Fajtova P.; Brynda J.; Vondrášek J.; McKerrow J. H.; Caffrey C. R.; Mareš M. (2014) Activation Route of the Schistosoma mansoni Cathepsin B1 Drug Target: Structural Map with a Glycosaminoglycan Switch. Structure 22 (12), 1786–1798. 10.1016/j.str.2014.09.015. PubMed DOI
Schechter I.; Berger A. (1967) On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27 (2), 157–62. 10.1016/S0006-291X(67)80055-X. PubMed DOI
Thompson S. A.; Andrews P. R.; Hanzlik R. P. (1986) Carboxyl-modified amino acids and peptides as protease inhibitors. J. Med. Chem. 29 (1), 104–11. 10.1021/jm00151a018. PubMed DOI
Schmitz J.; Gilberg E.; Löser R.; Bajorath J.; Bartz U.; Gütschow M. (2019) Cathepsin B: Active site mapping with peptidic substrates and inhibitors. Bioorg. Med. Chem. 27 (1), 1–15. 10.1016/j.bmc.2018.10.017. PubMed DOI
Greenspan P. D.; Clark K. L.; Tommasi R. A.; Cowen S. D.; McQuire L. W.; Farley D. L.; van Duzer J. H.; Goldberg R. L.; Zhou H.; Du Z.; Fitt J. J.; Coppa D. E.; Fang Z.; Macchia W.; Zhu L.; Capparelli M. P.; Goldstein R.; Wigg A. M.; Doughty J. R.; Bohacek R. S.; Knap A. K. (2001) Identification of dipeptidyl nitriles as potent and selective inhibitors of cathepsin B through structure-based drug design. J. Med. Chem. 44 (26), 4524–4534. 10.1021/jm010206q. PubMed DOI
Ottersbach P. A.; Schnakenburg G.; Gütschow M. (2012) Induction of chirality: experimental evidence of atropisomerism in azapeptides. Chem. Commun. (Cambridge, U. K.) 48 (46), 5772–4. 10.1039/c2cc31161e. PubMed DOI
Ottersbach P. A.; Schmitz J.; Schnakenburg G.; Gütschow M. (2013) An access to aza-Freidinger lactams and E-locked analogs. Org. Lett. 15 (3), 448–51. 10.1021/ol3030583. PubMed DOI
Fanfrlík J.; Brahmkshatriya P. S.; Řezáč J.; Jílková A.; Horn M.; Mareš M.; Hobza P.; Lepšík M. (2013) Quantum Mechanics-Based Scoring Rationalizes the Irreversible Inactivation of Parasitic Schistosoma mansoni Cysteine Peptidase by Vinyl Sulfone Inhibitors. J. Phys. Chem. B 117 (48), 14973–14982. 10.1021/jp409604n. PubMed DOI
Mladenovic M.; Fink R. F.; Thiel W.; Schirmeister T.; Engels B. (2008) On the origin of the stabilization of the zwitterionic resting state of cysteine proteases: a theoretical study. J. Am. Chem. Soc. 130 (27), 8696–705. 10.1021/ja711043x. PubMed DOI
Paasche A.; Schirmeister T.; Engels B. (2013) Benchmark Study for the Cysteine-Histidine Proton Transfer Reaction in a Protein Environment: Gas Phase, COSMO, QM/MM Approaches. J. Chem. Theory Comput. 9 (3), 1765–77. 10.1021/ct301082y. PubMed DOI
Schirmeister T.; Kesselring J.; Jung S.; Schneider T. H.; Weickert A.; Becker J.; Lee W.; Bamberger D.; Wich P. R.; Distler U.; Tenzer S.; Johe P.; Hellmich U. A.; Engels B. (2016) Quantum Chemical-Based Protocol for the Rational Design of Covalent Inhibitors. J. Am. Chem. Soc. 138 (27), 8332–5. 10.1021/jacs.6b03052. PubMed DOI
Quesne M. G.; Ward R. A.; de Visser S. P. (2013) Cysteine protease inhibition by nitrile-based inhibitors: a computational study. Front. Chem. 1, 39.10.3389/fchem.2013.00039. PubMed DOI PMC
Löser R.; Pitzschler R.; Köckerling M. (2017) Synthesis and X-ray Crystal Structure of N’-Cyano-N,N’-dimethyl-4-nitrobenzohydrazide. Crystals 7 (10), 290.10.3390/cryst7100290. DOI
Licandro E.; Perdicchia D. (2004) N-acylhydrazines: Future perspectives offered by new syntheses and chemistry. Eur. J. Org. Chem. 2004 (4), 665–675. 10.1002/ejoc.200300416. DOI
Vogt A. D.; Di Cera E. (2012) Conformational selection or induced fit? A critical appraisal of the kinetic mechanism. Biochemistry 51 (30), 5894–902. 10.1021/bi3006913. PubMed DOI PMC
Copeland R. A. (2013) Slow Binding Inhibitors. In Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists, pp 203–244, John Wiley. PubMed
Miller B.; Friedman A. J.; Choi H.; Hogan J.; McCammon J. A.; Hook V.; Gerwick W. H. (2014) The marine cyanobacterial metabolite gallinamide A is a potent and selective inhibitor of human cathepsin L. J. Nat. Prod. 77 (1), 92–9. 10.1021/np400727r. PubMed DOI PMC
Shokhen M.; Khazanov N.; Albeck A. (2011) The mechanism of papain inhibition by peptidyl aldehydes. Proteins: Struct., Funct., Genet. 79 (3), 975–85. 10.1002/prot.22939. PubMed DOI
Brady K. D. (1998) Bimodal inhibition of caspase-1 by aryloxymethyl and acyloxymethyl ketones. Biochemistry 37 (23), 8508–15. 10.1021/bi9803325. PubMed DOI
Laube M.; Frizler M.; Wodtke R.; Neuber C.; Belter B.; Kniess T.; Bachmann M.; Gütschow M.; Pietzsch J.; Löser R. (2019) Synthesis and preliminary radiopharmacological characterisation of an 11C-labelled azadipeptide nitrile as potential PET tracer for imaging of cysteine cathepsins. J. Labelled Compd. Radiopharm. 62 (8), 448–459. 10.1002/jlcr.3729. PubMed DOI
Baell J. B.; Holloway G. A. (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53 (7), 2719–40. 10.1021/jm901137j. PubMed DOI
Löser R.; Schilling K.; Dimmig E.; Gütschow M. (2005) Interaction of papain-like cysteine proteases with dipeptide-derived nitriles. J. Med. Chem. 48 (24), 7688–707. 10.1021/jm050686b. PubMed DOI
Jílková A.; Horn M.; Mareš M. (2020) Structural and Functional Characterization of Schistosoma mansoni Cathepsin B1. Methods Mol. Biol. 2151, 145–158. 10.1007/978-1-0716-0635-3_12. PubMed DOI
Mueller U.; Forster R.; Hellmig M.; Huschmann F. U.; Kastner A.; Malecki P.; Puhringer S.; Rower M.; Sparta K.; Steffien M.; Uhlein M.; Wilk P.; Weiss M. S. (2015) The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: Current status and perspectives. Eur. Phys. J. Plus 130 (7), 141.10.1140/epjp/i2015-15141-2. DOI
Kabsch W. (2010) Xds. Acta Crystallogr., Sect. D: Biol. Crystallogr. 66 (2), 125–132. 10.1107/S0907444909047337. PubMed DOI PMC
Vagin A.; Teplyakov A. (2000) An approach to multi-copy search in molecular replacement. Acta Crystallogr., Sect. D: Biol. Crystallogr. 56 (12), 1622–1624. 10.1107/S0907444900013780. PubMed DOI
Winn M. D.; Ballard C. C.; Cowtan K. D.; Dodson E. J.; Emsley P.; Evans P. R.; Keegan R. M.; Krissinel E. B.; Leslie A. G.; McCoy A.; McNicholas S. J.; Murshudov G. N.; Pannu N. S.; Potterton E. A.; Powell H. R.; Read R. J.; Vagin A.; Wilson K. S. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr., Sect. D: Biol. Crystallogr. 67 (4), 235–242. 10.1107/S0907444910045749. PubMed DOI PMC
Emsley P.; Cowtan K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr., Sect. D: Biol. Crystallogr. 60 (12), 2126–2132. 10.1107/S0907444904019158. PubMed DOI
Klamt A.; Schuurmann G. (1993) Cosmo - a New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc., Perkin Trans. 2 (5), 799–805. 10.1039/P29930000799. DOI
Ahlrichs R.; Bar M.; Haser M.; Horn H.; Kolmel C. (1989) Electronic-Structure Calculations on Workstation Computers - the Program System Turbomole. Chem. Phys. Lett. 162 (3), 165–169. 10.1016/0009-2614(89)85118-8. DOI
Řezáč J. (2016) Cuby: An integrative framework for computational chemistry. J. Comput. Chem. 37 (13), 1230–7. 10.1002/jcc.24312. PubMed DOI
Lovell S. C.; Davis I. W.; Arendall W. B. III; de Bakker P. I.; Word J. M.; Prisant M. G.; Richardson J. S.; Richardson D. C. (2003) Structure validation by Cα geometry: φ, ψ and Cβ deviation. Proteins: Struct., Funct., Genet. 50 (3), 437–450. 10.1002/prot.10286. PubMed DOI
Case D. A., Babin V., Berryman J. T., Betz R. M., Cai Q., Cerutti D. S., Cheatham T. E., Darden T. A., Duke R. E., Gohlke H., Goetz A. W., Gusarov S., Homeyer N., Janowski P., Kaus J., Kolossváry I., Kovalenko A., Lee T. S., LeGrand S., Luchko T., Luo R., Madej B., Merz K. M., Paesani F., Roe D. R., Roitberg A., Sagui C., Salomon-Ferrer R., Seabra G., Simmerling C. L., Smith W., Swails J., Walker R. C., Wang J., Wolf R. M., Wu X., and Kollman P. A. (2014) AMBER 14, University of California San Francisco, San Francisco (USA).
Hostaš J.; Řezáč J. (2017) Accurate DFT-D3 Calculations in a Small Basis Set. J. Chem. Theory Comput. 13 (8), 3575–3585. 10.1021/acs.jctc.7b00365. PubMed DOI
Stewart J. J. (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J. Mol. Model. 13 (12), 1173–213. 10.1007/s00894-007-0233-4. PubMed DOI PMC
Řezáč J.; Hobza P. (2012) Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 8 (1), 141–51. 10.1021/ct200751e. PubMed DOI
Stewart J. J. P. (2004) Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements. J. Mol. Model. 10 (2), 155–164. 10.1007/s00894-004-0183-z. PubMed DOI
Fanfrlík J.; Bronowska A. K.; Řezáč J.; Přenosil O.; Konvalinka J.; Hobza P. (2010) A reliable docking/scoring scheme based on the semiempirical quantum mechanical PM6-DH2 method accurately covering dispersion and H-bonding: HIV-1 protease with 22 ligands. J. Phys. Chem. B 114 (39), 12666–78. 10.1021/jp1032965. PubMed DOI
Lepšík M.; Řezáč J.; Kolář M.; Pecina A.; Hobza P.; Fanfrlík J. (2013) The Semiempirical Quantum Mechanical Scoring Function for In Silico Drug Design. ChemPlusChem 78 (9), 921–931. 10.1002/cplu.201300199. PubMed DOI
Marenich A. V.; Cramer C. J.; Truhlar D. G. (2009) Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies. J. Phys. Chem. B 113 (14), 4538–43. 10.1021/jp809094y. PubMed DOI
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., and Fox D. J. (2016) Gaussian 16, Rev. C.01, Gaussian, Inc., Wallingford (USA).
Fajtová P.; Štefanić S.; Hradilek M.; Dvořák J.; Vondrášek J.; Jílková A.; Ulrychová L.; McKerrow J. H.; Caffrey C. R.; Mareš M.; Horn M. (2015) Prolyl Oligopeptidase from the Blood Fluke Schistosoma mansoni: From Functional Analysis to Anti-schistosomal Inhibitors. PLoS Neglected Trop. Dis. 9 (6), e000382710.1371/journal.pntd.0003827. PubMed DOI PMC
Abdulla M. H.; Ruelas D. S.; Wolff B.; Snedecor J.; Lim K. C.; Xu F.; Renslo A. R.; Williams J.; McKerrow J. H.; Caffrey C. R. (2009) Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening. PLoS Neglected Trop. Dis. 3 (7), e47810.1371/journal.pntd.0000478. PubMed DOI PMC
Štefanić S.; Dvořák J.; Horn M.; Braschi S.; Sojka D.; Ruelas D. S.; Suzuki B.; Lim K.-C.; Hopkins S. D.; McKerrow J. H.; Caffrey C. R. (2010) RNA Interference in Schistosoma mansoni Schistosomula: Selectivity, Sensitivity and Operation for Larger-Scale Screening. PLoS Neglected Trop. Dis. 4 (10), e85010.1371/journal.pntd.0000850. PubMed DOI PMC
Leontovyč A.; Ulrychová L.; Horn M.; Dvořák J. (2020) Collection of Excretory/Secretory Products from Individual Developmental Stages of the Blood Fluke Schistosoma mansoni. Methods Mol. Biol. 2151, 55–63. 10.1007/978-1-0716-0635-3_5. PubMed DOI
Dvořák J.; Fajtová P.; Ulrychová L.; Leontovyč A.; Rojo-Arreola L.; Suzuki B. M.; Horn M.; Mareš M.; Craik C. S.; Caffrey C. R.; O’Donoghue A. J. (2016) Excretion/secretion products from Schistosoma mansoni adults, eggs and schistosomula have unique peptidase specificity profiles. Biochimie 122, 99–109. 10.1016/j.biochi.2015.09.025. PubMed DOI PMC
Glaser J.; Schurigt U.; Suzuki B. M.; Caffrey C. R.; Holzgrabe U. (2015) Anti-Schistosomal Activity of Cinnamic Acid Esters: Eugenyl and Thymyl Cinnamate Induce Cytoplasmic Vacuoles and Death in Schistosomula of Schistosoma mansoni. Molecules 20 (6), 10873–83. 10.3390/molecules200610873. PubMed DOI PMC
Long T.; Neitz R. J.; Beasley R.; Kalyanaraman C.; Suzuki B. M.; Jacobson M. P.; Dissous C.; McKerrow J. H.; Drewry D. H.; Zuercher W. J.; Singh R.; Caffrey C. R. (2016) Structure-Bioactivity Relationship for Benzimidazole Thiophene Inhibitors of Polo-Like Kinase 1 (PLK1), a Potential Drug Target in Schistosoma mansoni. PLoS Neglected Trop. Dis. 10 (1), e000435610.1371/journal.pntd.0004356. PubMed DOI PMC