Most cited article - PubMed ID 33330139
Adhesion, Biofilm Formation, and luxS Sequencing of Campylobacter jejuni Isolated From Water in the Czech Republic
Although Campylobacter jejuni is the pathogen responsible for the most common foodborne illness, tracing of the infection source remains challenging due to its highly variable genome. Therefore, one of the aim of the study was to compare three genotyping methods (MLST, PFGE, and mP-BIT) to determine the most effective genotyping tool. C. jejuni strains were divided into 4 clusters based on strain similarity in the cgMLST dendrogram. Subsequently, the dendrograms of the 3 tested methods were compared to determine the accuracy of each method compared to the reference cgMLST method. Moreover, a cost-benefit analysis has showed that MLST had the highest inverse discrimination index (97%) and required less workflow, time, fewer consumables, and low bacterial sample quantity. PFGE was shown to be obsolete both because of its low discriminatory power and the complexity of the procedure. Similarly, mP‑BIT showed low separation results, which was compensated by its high availability. Therefore, our data showed that MLST is the optimal tool for genotyping C. jejuni. Another aim was to compare the antimicrobial resistance to ciprofloxacin, erythromycin, and tetracycline in C. jejuni strains isolated from human, water, air, food, and animal samples by two gene sequence-based prediction methods and to compare them with the actual susceptibility of C. jejuni strains using the disc diffusion method. Both tools, ResFinder and RGI, synchronously predict the antimicrobial susceptibility of C. jejuni and either can be used.
- Keywords
- Antimicrobial resistance, MLST, PFGE, RGI, ResFinder, cgMLST, mP-BIT,
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Drug Resistance, Bacterial genetics MeSH
- Campylobacter jejuni * genetics MeSH
- Genotype MeSH
- Campylobacter Infections * microbiology MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Multilocus Sequence Typing MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
AIMS: The purpose of the study was to evaluate the occurrence of Campylobacter jejuni and Campylobacter coli in the aquatic environment based on the water origin, seasonality and physico-chemical properties. METHODS AND RESULTS: The occurrence of C. jejuni and C. coli was determined in waste (29) or surface (56) waters in four different seasons. The air and water temperatures were measured during sampling and chemical analyses of water samples for ammonium, chloride, chlorine, nitrite, nitrate, phosphate and iron were performed. The thermotolerant Campylobacter spp. were more frequently detected in wastewater (59%; 17 positive samples) compared to surface water (38%; 21 positive samples), with the highest rate in autumn (67% of samples positive) and with a higher C. coli occurrence than C. jejuni (31% vs. 26%). Ammonium (above 0.2 mg/L) and chloride ion concentrations (above 60 mg/L) favour C. jejuni. Similarly, C. coli occurrence in water was supported by ammonium (above 0.2 mg/L), chloride (above 60 mg/L) and in addition by phosphate ion concentrations (below 0.7 mg/L). CONCLUSIONS: Campylobacter presence in water is influenced by physico-chemical parameters such as concentrations of ammonium and chloride ions. SIGNIFICANCE AND IMPACT OF THE STUDY: Water environment is an alternative source of Campylobacter. The concentration of ammonium and chloride ions can be used as a basis for successful prediction of the potential occurrence of C. jejuni and C. coli in wastewater and surface water in future.
- Keywords
- Campylobacter, ammonium salts, chloride salts, seasons, waters,
- MeSH
- Campylobacter coli * MeSH
- Campylobacter jejuni * MeSH
- Campylobacter * MeSH
- Campylobacter Infections * epidemiology MeSH
- Humans MeSH
- Wastewater MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Waste Water MeSH
Campylobacter jejuni is regarded as the leading cause of bacterial gastroenteritis around the world. Even though it is generally considered to be a sensitive microaerobic pathogen, it is able to survive in the environment outside of the intestinal tract of the host. This study aimed to assess the impact of selected environmental parameters on the survival of 14 C. jejuni isolates of different origins, including 12 water isolates. The isolates were tested for their antibiotic resistance, their ability to survive at low temperature (7°C), develop aerotolerance, and to interact with the potential protozoan host Acanthamoeba polyphaga. The antibiotic susceptibility was determined by standard disk diffusion according to EUCAST. Out of the 14 isolates, 8 were resistant to ciprofloxacin (CIP) and 5 to tetracycline (TET), while only one isolate was resistant to erythromycin (ERY). Five isolates were resistant to two different antibiotic classes. Tetracycline resistance was only observed in isolates isolated from wastewater and a clinical sample. Further, the isolates were tested for their survival at 7°C under both aerobic and microaerobic conditions using standard culture methods. The results showed that under microaerobic conditions, all isolates maintained their cultivability for 4 weeks without a significant decrease in the numbers of bacteria and variation between the isolates. However, significant differences were observed under aerobic conditions (AC). The incubation led to a decrease in the number of cultivable cells, with complete loss of cultivability after 2 weeks (one water isolate), 3 weeks (7 isolates), or 4 weeks of incubation (6 isolates). Further, all isolates were studied for their ability to develop aerotolerance by repetitive subcultivation under microaerobic and subsequently AC. Surprisingly, all isolates were able to adapt and grow under AC. As the last step, 5 isolates were selected to evaluate a potential protective effect provided by A. polyphaga. The cocultivation of isolates with the amoeba resulted in the survival of about 40% of cells treated with an otherwise lethal dose of gentamicin. In summary, C. jejuni is able to adapt and survive in a potentially detrimental environment for a prolonged period of time, which emphasizes the role of the environmental transmission route in the spread of campylobacteriosis.
- Keywords
- Acanthamoeba polyphaga, Campylobacter jejuni, aerotolerance, low temperature, oxidative stress, water isolates,
- Publication type
- Journal Article MeSH