Most cited article - PubMed ID 34289883
Phlebotomine sand fly survey in the Republic of Moldova: species composition, distribution and host preferences
Toscana virus (TOSV) is an emerging but neglected human pathogen currently circulating around the Mediterranean basin including North Africa. Human illness ranges from asymptomatic or mild flu-like syndromes to severe neurological diseases such as meningitis or meningoencephalitis. Despite its significant impact, understanding of TOSV transmission and epidemiology remains limited. Sand flies (Diptera: Phlebotominae), specifically Phlebotomus perniciosus and Phlebotomus perfiliewi, are believed to be the primary vectors of TOSV. However, the spread of TOSV to new geographical areas and its detection in other sand fly species suggest that additional species play a role in the circulation and transmission of this virus. This study investigated the vector competence of four sand fly species - P. tobbi, P. sergenti, P. papatasi, and Sergentomyia schwetzi - for two TOSV strains: 1500590 (TOSV A lineage) and MRS20104319501 (TOSV B lineage). Sand flies were orally challenged with TOSV via bloodmeals. None of the tested species showed susceptibility to the TOSV A strain. However, for TOSV B strain, P. tobbi demonstrated a high potential as a new vector, exhibiting high infection and dissemination rates. P. sergenti also showed some susceptibility to TOSV B, with the virus dissemination observed in all infected females. These finding suggests that P. tobbi and P. sergenti are new potential vectors for TOSV B. Given that P. tobbi and P. sergenti are the primary vectors of human leishmaniases in the Balkans, Turkey and Middle East, their susceptibility to TOSV could have significant epidemiological consequences. On the other hand, P. papatasi and S. schwetzi appeared refractory to TOSV B infection. Refractoriness of P. papatasi, a highly anthropophilic species distributed from the Mediterranean to the Middle East and India, suggests that this species does not contribute to TOSV circulation.
- MeSH
- Insect Vectors * virology MeSH
- Humans MeSH
- Phlebotomus * virology MeSH
- Psychodidae * virology classification MeSH
- Sandfly fever Naples virus * physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Phlebotomine sand flies (Diptera: Psychodidae: Phlebotominae) are the principal vectors of Leishmania spp. (Kinetoplastida: Trypanosomatidae) worldwide. The subgenus Adlerius is taxonomically challenging and currently comprises about 20 species with a wide geographic distribution from eastern Asia to southeastern Europe. Some species are confirmed or suspected vectors of Leishmania donovani/infantum, L. major, and L. tropica, and are thus of high medical and veterinary relevance. A single record of Phlebotomus (Adlerius) simici in Austria from 2018 marks its sporadic northernmost and westernmost occurrence, with the origin of its appearance remaining unclear. To better understand Adlerius diversification and particularly post-glacial spread of Ph. simici to northern parts of Europe, we combined phylogenetic analyses with climatic suitability modelling. Divergence time estimates well supported the currently observed geographic distribution of the studied species and revealed several taxonomic challenges in the subgenus. We clearly delineated three distinct genetic and geographic Ph. simici lineages and phylogeographically assessed diversification that were well supported by climatic models. This study provides a comprehensive phylogenetic analysis of the subgenus Adlerius, enhancing our understanding of the diversification in relation to changing climate of this understudied group, and we present new insights into the post-glacial spread of Ph. simici, a suspected vector of L. infantum.
- Keywords
- Adlerius, COI, Central Europe, Divergence time, Phylogeography,
- MeSH
- Phylogeny MeSH
- Phylogeography MeSH
- Insect Vectors * genetics classification parasitology MeSH
- Phlebotomus * genetics classification MeSH
- Climate * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH