Nejvíce citovaný článek - PubMed ID 34327618
Sharing a bed with mites: preferences of the house dust mite Dermatophagoides farinae in a temperature gradient
Storage mites consume stored products in interaction with environmental microorganisms, resulting in the destruction of infested food and providing specific odours. Here we simulated the effect of mite grazing on oat flakes. Spent growth medium (SPGM) was obtained from seven mite cultures and mixed with oat flakes as the source of faeces and microbes. SPGM-treated diets were offered to 4 mite cultures. The microbiomes were analysed using sequencing of V4_16S_DNA. Mite growth tests, food preferences, and microbiome changes were observed in correlation with SPGM type and mite cultures. The microbiome consisted of 41 OTUs belonging to mite-associated bacteria and faeces bacteria. The composition of the microbiome depends more on the source of SPGM than on mite culture. The SPGM diet accelerated mite population growth and influenced mite food choice, although the effect was dependent on both types of SPGM and mite culture. Kocuria, Brevibacterium, Virgibacillus, and Staphylococcus profiles in SPGM added into diets showed positive correlations to mite population growth. The Kocuria profile in the bodies of mites was positively correlated with mite population growth. The results showed that mites are influenced by SPGM-treated diets, and mite feeding influences the environmental microbiome. The most beneficial was the mite interaction with Kocuria.
- Klíčová slova
- allergens, bacteria, digestion, faeces, interaction,
- MeSH
- Acaridae * mikrobiologie růst a vývoj MeSH
- Bacteria * klasifikace genetika izolace a purifikace MeSH
- feces mikrobiologie MeSH
- mikrobiologie životního prostředí * MeSH
- mikrobiota * MeSH
- RNA ribozomální 16S genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Dermatophagoides farinae is an important house dust mite species that causes allergies in humans worldwide. In houses, these mites are commonly found in actively used mattresses and pillows, which provide food (i.e. sloughed skin and microorganisms), moisture, and increased temperature for faster mite development. In mattresses, feeding mites prefer the upper sector, as close as possible to the resting human (temperature 32-36 °C, humidity between 55 and 59%). However, mites that are not actively feeding prefer staying at deeper zones of the mattress. Here, we analyzed mite responses to different temperatures (15-35 °C) and relative humidity (62-94% RH) in terms of their population size growth and respiration (CO2 production) using lab mite cultures. The intrinsic rate of population increase had a single maximum at approximately 28 °C and 85% RH. At 30 °C, there were two respiration peaks at RH 90% (smaller peak) and 65% (larger peak). Therefore, there is a mismatch between the optimal temperature/humidity for the population size increase vs. respiration. We propose preliminary hypotheses explaining the two respiration peaks and suggest that future research should be done to elucidate the nature of these peaks.
- Klíčová slova
- Dermatophagoides farinae, House dust mites, Humidity, Physiology, Population growth, Respiration, Temperature,
- MeSH
- alergeny MeSH
- antigeny roztočů domácího prachu MeSH
- Dermatophagoides farinae * fyziologie MeSH
- lidé MeSH
- populační růst * MeSH
- prach MeSH
- teplota MeSH
- vlhkost MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alergeny MeSH
- antigeny roztočů domácího prachu MeSH
- prach MeSH