Most cited article - PubMed ID 34597557
Hydropeaking causes spatial shifts in a reproducing rheophilic fish
Stable isotope analysis (SIA) is widely used to study trophic ecology and food webs in aquatic ecosystems. In the case of fish, muscle tissue is generally preferred for SIA, and the method is lethal in most cases. We tested whether blood and fin clips can be used as non-lethal alternatives to muscle tissue for examining the isotopic composition of two freshwater predatory fish, European catfish (Silurus glanis) and Northern pike (Esox lucius), species of high value for many freshwater systems as well as invasive species in many others. Blood samples from the caudal vein, anal fin clips, and dorsal muscle obtained by biopsy punch were collected from four catfish and pike populations (14-18 individuals per population). Subsequently, these samples were analyzed for δ13C and δ15N. The effects of alternative tissues, study site, and fish body mass on the isotopic offset were investigated. Both species showed a correlation between the isotopic offset and the tissue type, as well as the study site, but no significant relationship with the body mass. The isotopic offsets between tissues were used to calculate the conversion equations. The results demonstrated that both blood and fin clips are suitable and less invasive alternative to muscle in SIA studies focused on European catfish and Northern pike. Blood provided better correspondence to muscle isotope values. However, our results clearly demonstrated that isotopic offsets between tissues vary significantly among populations of the same species. Therefore, obtaining a muscle biopsy from several individuals in any population is advisable to gain initial insights and establish a possible population-specific inter-tissue conversion.
- MeSH
- Ecosystem * MeSH
- Esocidae physiology MeSH
- Nitrogen Isotopes analysis MeSH
- Carbon Isotopes analysis MeSH
- Fresh Water MeSH
- Catfishes * MeSH
- Muscles chemistry MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Nitrogen Isotopes MeSH
- Carbon Isotopes MeSH
Intra-species variability in isotopic niches, specifically isotopic total niche width (ITNW), isotopic individual niche width (IINW), and isotopic individual specialization (IIS), was studied using an innovative approach without sacrificing the vertebrates. Stable isotopes (δ13C, δ15N) in four body tissues differing in isotopic half-life were analyzed from four freshwater fish species representing different trophic positions. ITNW was widest for the apex predator (European catfish) and narrowest for the obligate predator (Northern pike). IINW exhibited a polynomial trend for the European catfish, Northern pike, and Eurasian perch (mesopredator), decreasing with body mass and increasing again after exceeding a certain species-dependent body mass threshold. Thus, for ectotherms, apex predator status is linked rather to its size than to the species. In herbivores (rudd), IINW increased with body mass. The IIS of predators negatively correlated with site trophic state. Therefore, eutrophication can significantly change the foraging behavior of certain species. We assume that the observed trends will occur in other species at similar trophic positions in either aquatic or terrestrial systems. For confirmation, we recommend conducting a similar study on other species in different habitats.
- Keywords
- aquatic food web, freshwater ecosystem, isotopic half-life, niche width, stable isotope analysis,
- Publication type
- Journal Article MeSH
BACKGROUND: Animal migrations are periodic and relatively predictable events, and their precise timing is essential to the reproductive success. Despite large scientific effort in monitoring animal reproductive phenology, identification of complex environmental cues that determine the timing of reproductive migrations and temporal changes in the size of reproductive aggregations in relation to environmental variables is relatively rare in the current scientific literature. METHODS: We tagged and tracked 1702 individuals of asp (Leuciscus aspius), a large minnow species, and monitored with a resolution of one hour the size of their reproductive aggregations (counts of sexes present at the breeding grounds standardized by the sum of individuals in the season) over seven breeding seasons using passive integrated transponder tag systems. We examined the size of reproductive aggregations in relation to environmental cues of day number within a reproductive season (intra-year seasonality), water temperature, discharge, hour in a day (intra-day pattern), temperature difference between water and air, precipitation, atmospheric pressure, wind speed and lunar phase. A generalized additive model integrating evidence from seven breeding seasons and providing typical dynamics of reproductive aggregations was constructed. RESULTS: We demonstrated that all environmental cues considered contributed to the changes in the size of reproductive aggregations during breeding season, and that some effects varied during breeding season. Our model explained approximately 50% of the variability in the data and the effects were sex-dependent (models of the same structure were fitted to each sex separately, so that we effectively stratified on sex). The size of reproductive aggregations increased unimodally in response to day in season, correlated positively with water temperature and wind speed, was highest before and after the full moon, and highest at night (interacting with day in a season). Males responded negatively and females positively to increase in atmospheric pressure. CONCLUSION: The data demonstrate complex utilization of available environmental cues to time reproductive aggregations in freshwater fish and their interactions during the reproductive season. The study highlights the need to acquire diverse data sets consisting of many environmental cues to achieve high accuracy of interpretation of reproductive timing.
- Keywords
- Fish movement, Long-term monitoring, Migration, Phenology, Reproductive behaviour, Weather,
- Publication type
- Journal Article MeSH