Most cited article - PubMed ID 34717064
MiR-18a Inhibits PI3K/AKT Signaling Pathway to Regulate PDGF BB-Induced Airway Smooth Muscle Cell Proliferation and Phenotypic Transformation
Diabetes is closely connected with skeletal muscle dysfunction. Ellagic acid (EA) possesses a variety of bio-effects and is applied to the improvement of diabetes. The purpose of this study was to explore the potential improvement effect and mechanisms of EA in streptozotocin (STZ)-induced diabetic muscle atrophy. The model of diabetic mice was established by intra-peritoneal STZ to evaluate treatment effect of EA (100 mg/kg/d for 8 weeks) on muscle atrophy. Our data exhibited that EA enhanced fiber size and weight of gastrocnemius, and promoted grip strength to relieve STZ-induced muscle lesions. In serum, the levels of Creatine kinase (CK), lactate dehydrogenase (LDH), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL) were inhibited, while high-density lipoprotein cholesterol (HDL) level was enhanced by EA treatment in diabetic mice. In gastrocnemius, EA decreased Atrogin-1 and MuRF-1 expressions to relieve STZ-induced muscle atrophy. Moreover, EA increased NRF-1 and PGC-1alpha expressions to alleviate mitochondrial disorder. Meanwhile, EA suppressed CHOP and GRP-87 levels to relieve ER stress. Lastly, EA inhibited BAX expressions and enhanced Bcl-2 expressions to mitigate apoptosis. In conclusion, EA is preventing the event of STZ-induced gastrocnemia by amelioration of mitochondrial dysfunction, ER stress and apoptosis, and could be used in the protection and therapeutic of muscle atrophy in diabetes.
- MeSH
- Cholesterol metabolism MeSH
- Diabetes Mellitus, Experimental * chemically induced complications drug therapy MeSH
- Muscle, Skeletal metabolism MeSH
- Ellagic Acid * pharmacology therapeutic use metabolism MeSH
- Mice MeSH
- Streptozocin metabolism pharmacology MeSH
- Muscular Atrophy drug therapy prevention & control metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cholesterol MeSH
- Ellagic Acid * MeSH
- Streptozocin MeSH