Nejvíce citovaný článek - PubMed ID 34951405
A dual endosymbiosis supports nutritional adaptation to hematophagy in the invasive tick Hyalomma marginatum
Hyalomma marginatum is a prominent tick vector responsible for transmitting various pathogens, including the Crimean-Congo hemorrhagic fever virus (CCHFV), across Europe. This systematic review consolidates findings from 144 publications regarding the geographical distribution of H. marginatum and its associated pathogens. Significant populations have been identified primarily in Southern Europe and Balkan Peninsula, indicating a concerning trend. Additionally, climate change and migratory bird movements may facilitate its further dispersal, potentially leading to the establishment of H. marginatum in transalpine regions. Consequently, robust monitoring and surveillance strategies are essential to mitigate the public health and livestock threats posed by Hyalomma-borne diseases. Raising awareness and implementing preventive measures will be crucial in addressing the challenges associated with this tick vector.
- Klíčová slova
- Crimean–Congo hemorrhagic fever virus, Hyalomma marginatum, Rickettsia, migratory birds, surveillance, tick distribution,
- MeSH
- arachnida jako vektory * virologie fyziologie MeSH
- Ixodidae * virologie fyziologie MeSH
- rozšíření zvířat MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- systematický přehled MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
Ixodes ricinus ticks act as vectors for numerous pathogens that present substantial health threats. Additionally, they harbor vertically transmitted symbionts, some of which have been linked to diseases. The difficulty of isolating and cultivating these symbionts has hampered our understanding of their biological role, their potential to cause disease, and their modes of transmission. To expand our understanding of the tick symbiont Midichloria mitochondrii and Rickettsia helvetica, which has been linked to disease in humans, we utilized deep sequencing on 16 individual adult female ticks collected from coastal dune and forested areas in the Netherlands. By employing a combination of second- and third-generation sequencing techniques, we successfully reconstructed the complete genomes of M. mitochondrii from 11 individuals, R. helvetica from eight individuals, and the mitochondrial genome from all ticks. Additionally, we visualized the location of R. helvetica in tick organs and constructed genome-scale metabolic models (GEMs) of both symbionts to study their environmental dependencies. Our analysis revealed a strong cophylogeny between M. mitochondrii and mitochondrial genomes, suggesting frequent maternal transmission. In contrast, the absence of cophylogeny between R. helvetica and the mitochondrial genomes, coupled with its presence in the receptaculum seminis of I. ricinus females, raises the possibility of paternal transmission of R. helvetica. Notably, the genetic diversity of R. helvetica was found to be very low, except for the rickA virulence gene, where the presence of up to 13 insertions of a 33 nt-long repeat led to significant variability. However, this variation could not account for the differences in infection prevalence observed across eight distinct locations in the Netherlands. By employing deep sequencing, it becomes feasible to extract complete genomes and genetic data of symbionts directly from their host organisms. This methodology serves as a robust means to gain fresh insights into their interactions. Our observations, which suggest paternal transmission of R. helvetica, a relatively unexplored mode of transmission in ticks, require validation through experimental investigations. The genetic variations identified in the rickA virulence gene of R. helvetica have the potential to influence the infectivity and transmission dynamics of R. helvetica.IMPORTANCETicks are vectors of numerous human pathogens; however, the microbial interactions within ticks and the mechanisms governing pathogen transmission remain poorly understood. This study uses deep sequencing of individual Ixodes ricinus to reconstruct high-quality genomes of endosymbionts and the mitochondrion of the tick, revealing previously undetected microbial dynamics. Notably, we recovered low-abundance Rickettsia and Midichloria genomes from single ticks and present evidence that suggests paternal transmission of R. helvetica. These findings offer novel insights into the ecology and evolution of tick-associated microbes and have implications for understanding the origins and spread of tick-borne diseases.
- Klíčová slova
- Ixodes ricinus, Midichloria mitochondrii, Rickettsia helvetica, cophylogenetic analysis, deep sequencing, genome reconstruction, genome-scale metabolic modeling, paternal transmission, symbionts,
- MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- genom mitochondriální MeSH
- klíště * mikrobiologie genetika MeSH
- Rickettsia * genetika fyziologie MeSH
- symbióza * genetika MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In addition to being vectors of pathogenic bacteria, ticks also harbor intracellular bacteria that associate with ticks over generations, aka symbionts. The biological significance of such bacterial symbiosis has been described in several tick species but its function in Ixodes ricinus is not understood. We have previously shown that I. ricinus ticks are primarily inhabited by a single species of symbiont, Midichloria mitochondrii, an intracellular bacterium that resides and reproduces mainly in the mitochondria of ovaries of fully engorged I. ricinus females. To study the functional integration of M. mitochondrii into the biology of I. ricinus, an M. mitochondrii-depleted model of I. ricinus ticks was sought. Various techniques have been described in the literature to achieve dysbiosed or apo-symbiotic ticks with various degrees of success. To address the lack of a standardized experimental procedure for the production of apo-symbiotic ticks, we present here an approach utilizing the ex vivo membrane blood feeding system. In order to deplete M. mitochondrii from ovaries, we supplemented dietary blood with tetracycline. We noted, however, that the use of tetracycline caused immediate toxicity in ticks, caused by impairment of mitochondrial proteosynthesis. To overcome the tetracycline-mediated off-target effect, we established a protocol that leads to the production of an apo-symbiotic strain of I. ricinus, which can be sustained in subsequent generations. In two generations following tetracycline administration and tetracycline-mediated symbiont reduction, M. mitochondrii was gradually eliminated from the lineage. Larvae hatched from eggs laid by such M. mitochondrii-free females repeatedly performed poorly during blood-feeding, while the nymphs and adults performed similarly to controls. These data indicate that M. mitochondrii represents an integral component of tick ovarian tissue, and when absent, results in the formation of substandard larvae with reduced capacity to blood-feed.
- Klíčová slova
- Ixodes ricinus, Midichloria, membrane feeding, mitochondria, symbionts, tetracycline, ticks,
- MeSH
- antibakteriální látky MeSH
- klíště * mikrobiologie MeSH
- mitochondrie MeSH
- symbióza MeSH
- tetracyklin MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- tetracyklin MeSH