Nejvíce citovaný článek - PubMed ID 35248266
The effect of motor imagery on quality of movement when performing reaching tasks in healthy subjects: A proof of concept
Motor imagery (MI) is a mental simulation of a movement without its actual execution. Our study aimed to assess how MI of two modalities of gait (normal gait and much more posturally challenging slackline gait) affects muscle activity and lower body kinematics. Electromyography (biceps femoris, gastrocnemius medialis, rectus femoris and tibialis anterior muscles) as well as acceleration and angular velocity (shank, thigh and pelvis segments) data were collected in three tasks for both MI modalities of gait (rest, gait imagery before and after the real execution of gait) in quiet bipedal stance in 26 healthy young adults. No significant change was observed in electromyography activity and lower body kinematics when comparing MI tasks of normal gait. A significantly higher acceleration for the lower limb segments in the vertical direction and for the pelvis in the mediolateral and anteroposterior direction and angular velocity for pelvis in the frontal plane were found during MI of slackline gait after its real execution compared to rest. The results show that MI of normal gait does not lead to any significant changes, while MI of slackline gait affects lower body kinematics parameters.
- Klíčová slova
- Acceleration, Angular velocity, Electromyography, Gait, Motor imagery, Muscle activity,
- MeSH
- biomechanika MeSH
- chůze (způsob) * fyziologie MeSH
- dolní končetina fyziologie MeSH
- dospělí MeSH
- elektromyografie * MeSH
- imaginace fyziologie MeSH
- kosterní svaly * fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
This study explores how gait imagery (GI) influences lower-limb muscle activity with respect to posture and previous walking experience. We utilized surface electromyography (sEMG) in 36 healthy young individuals aged 24 (±1.1) years to identify muscle activity during a non-gait imagery task (non-GI), as well as GI tasks before (GI-1) and after the execution of walking (GI-2), with assessments performed in both sitting and standing postures. The sEMG was recorded on both lower limbs on the tibialis anterior (TA) and on the gastrocnemius medialis (GM) for all tested tasks. As a result, a significant muscle activity decrease was found in the right TA for GI-1 compared to GI-2 in both sitting (p = 0.008) and standing (p = 0.01) positions. In the left TA, the activity decreased in the sitting posture during non-GI (p = 0.004) and GI-1 (p = 0.009) in comparison to GI-2. No differences were found for GM. The subjective level of imagination difficulty improved for GI-2 in comparison to GI-1 in both postures (p < 0.001). Previous sensorimotor experience with real gait execution and sitting posture potentiate TA activity decrease during GI. These findings contribute to the understanding of neural mechanisms beyond GI.
- Klíčová slova
- gait, motor imagery, muscle activity, surface electromyography,
- Publikační typ
- časopisecké články MeSH