Nejvíce citovaný článek - PubMed ID 35416039
Poly(4-Styrenesulfonic Acid-co-maleic Anhydride)-Coated NaGdF4:Yb,Tb,Nd Nanoparticles with Luminescence and Magnetic Properties for Imaging of Pancreatic Islets and β-Cells
In the diagnostics of diabetes, specific targeting of drugs (e.g., liraglutide) to insulin-deficient β-cells with their simultaneous noninvasive imaging is currently needed. In this report, liraglutide (LGL)-conjugated poly(methyl vinyl ether-alt-maleic acid) (PMVEMA)-coated core-shell NaYF4:Yb,Er,Fe@NaYF4:Nd upconversion nanoparticles (CS-UCNPs) have been developed, thoroughly physicochemically characterized, and evaluated in vivo. Novel codoping of Fe2+, Yb3+, and Er3+ ions in the host NaYF4 induced upconversion emission in the red region at both 980 and 808 nm excitation, making the particles suitable for deep-tissue imaging. Surface functionalization with PMVEMA provided colloidal stability and facilitated covalent conjugation with LGL, enabling targeted binding to GLP-1 receptors on pancreatic β-cells, increasing glucose-stimulated insulin secretion from isolated Langerhans islets. Biocompatibility of CS-UCNP@PMVEMA-LGL nanoparticles was confirmed by the trypan blue dye exclusion assay. When the fluorescent dye Flamma was conjugated to the nanoparticles, in vivo fluorescence imaging revealed significantly enhanced accumulation of CS-UCNP@PMVEMA-LGL-Flamma nanoparticles in the pancreas 24 h after intramuscular injection compared with intravenous administration, with luminescence intensity approximately doubled. The improved pancreatic targeting efficiency was attributed to enhanced binding to GLP-1 receptors. Confocal microscopy and elemental analysis confirmed receptor-mediated uptake of the nanoparticles by internalization and their localization within pancreatic β-cells. These findings highlight the potential of CS-UCNP@PMVEMA-LGL nanoparticles as biocompatible targetable imaging agents with future applications in pancreatic diagnostics.
- Klíčová slova
- Flamma, diabetes, liraglutide, nanoparticles, poly(methyl vinyl ether-alt-maleic acid), theranostics, upconversion,
- MeSH
- beta-buňky metabolismus účinky léků MeSH
- experimentální diabetes mellitus * farmakoterapie diagnostické zobrazování MeSH
- fluoridy MeSH
- inzulin metabolismus MeSH
- lidé MeSH
- liraglutid * chemie farmakologie MeSH
- maleáty * chemie MeSH
- myši MeSH
- nanočástice * chemie MeSH
- polyvinyly chemie MeSH
- teranostická nanomedicína * metody MeSH
- ytrium MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fluoridy MeSH
- inzulin MeSH
- liraglutid * MeSH
- maleáty * MeSH
- polyvinyly MeSH
- sodium yttriumtetrafluoride MeSH Prohlížeč
- ytrium MeSH
Upconverting nanoparticles are interesting materials that have the potential for use in many applications ranging from solar energy harvesting to biosensing, light-triggered drug delivery, and photodynamic therapy (PDT). One of the main requirements for the particles is their surface modification, in our case using poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and temoporfin (THPC) photosensitizer to ensure the colloidal and chemical stability of the particles in aqueous media and the formation of singlet oxygen after NIR irradiation, respectively. Codoping of Fe2+, Yb3+, and Er3+ ions in the NaYF4 host induced upconversion emission of particles in the red region, which is dominant for achieving direct excitation of THPC. Novel monodisperse PMVEMA-coated upconversion NaYF4:Yb3+,Er3+,Fe2+ nanoparticles (UCNPs) with chemically bonded THPC were found to efficiently transfer energy and generate singlet oxygen. The cytotoxicity of the UCNPs was determined in the human pancreatic adenocarcinoma cell lines Capan-2, PANC-01, and PA-TU-8902. In vitro data demonstrated enhanced uptake of UCNP@PMVEMA-THPC particles by rat INS-1E insulinoma cells, followed by significant cell destruction after excitation with a 980 nm laser. Intratumoral administration of these nanoconjugates into a mouse model of human pancreatic adenocarcinoma caused extensive necrosis at the tumor site, followed by tumor suppression after NIR-induced PDT. In vitro and in vivo results thus suggest that this nanoconjugate is a promising candidate for NIR-induced PDT of cancer.
- Klíčová slova
- pancreatic tumor, photodynamic therapy, temoporfin, upconversion,
- Publikační typ
- časopisecké články MeSH