Most cited article - PubMed ID 36119580
Addressing the contribution of small molecule-based biostimulants to the biofortification of maize in a water restriction scenario
We have developed and validated a novel LC-MS/MS method for simultaneously analyzing amino acids, biogenic amines, and their acetylated and methylated derivatives in plants. This method involves a one-step extraction of 2-5 mg of lyophilized plant material followed by fractionation of different biogenic amine forms, and exploits an efficient combination of hydrophilic interaction liquid chromatography (HILIC), reversed phase (RP) chromatography with pre-column derivatization, and tandem mass spectrometry (MS). This approach enables high-throughput processing of plant samples, significantly reducing the time needed for analysis and its cost. We also present a new synthetic route for deuterium-labeled polyamines. The LC-MS/MS method was rigorously validated by quantifying levels of nitrogen-related metabolites in seedlings of seven plant species, including Arabidopsis, maize, and barley, all of which are commonly used model organisms in plant science research. Our results revealed substantial variations in the abundance of these metabolites between species, developmental stages, and growth conditions, particularly for the acetylated and methylated derivatives and the various polyamine fractions. However, the biological relevance of these plant metabolites is currently unclear. Overall, this work contributes significantly to plant science by providing a powerful analytical tool and setting the stage for future investigations into the functions of these nitrogen-related metabolites in plants.
- Keywords
- Acetylated amino acids, LC-MS/MS, acetylated biogenic amines, amino acids, biogenic amines, methylated amino acids, plant metabolism,
- MeSH
- Arabidopsis metabolism growth & development MeSH
- Chromatography, Liquid MeSH
- Nitrogen * metabolism MeSH
- Hordeum metabolism growth & development MeSH
- Liquid Chromatography-Mass Spectrometry MeSH
- Zea mays metabolism growth & development MeSH
- Polyamines metabolism analysis MeSH
- Plants metabolism MeSH
- Tandem Mass Spectrometry * methods MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Nitrogen * MeSH
- Polyamines MeSH
Putrescine (Put) is a promising small molecule-based biostimulant to enhance plant growth and resilience, though its mode of action remains unclear. This study investigated the Put priming effect on Arabidopsis mutant lines (Atadc1, Atadc2, Atnata1, and Atnata2) under control conditions and salinity to understand its role in regulating plant growth. The Atadc2 mutant, characterized by reduced endogenous Put levels, showed insensitivity to Put priming without growth enhancement, which was linked to significant imbalances in nitrogen metabolism, including a high Gln/Glu ratio. Contrarily, the Atnata2 mutant exhibited significant growth improvement and upregulated AtADC2 expression, particularly under Put priming, highlighting these genes' involvement in regulating plant development. Put priming enhanced plant growth by inducing the accumulation of specific polyamines (free, acetylated, conjugated, or bound form) and improving light-harvesting efficiency, particularly in the Atnata2 line. Our findings suggest that AtNATA2 may negatively regulate Put synthesis and accumulation via AtADC2 in the chloroplast, impacting light harvesting in photosystem II (PSII). Furthermore, the Atadc2 mutant line exhibited upregulated AtADC1 but reduced AcPut levels, pointing to a cross-regulation among these genes. The regulation by AtNATA2 on AtADC2 and AtADC2 on AtADC1 could be crucial for plant growth and overall stress tolerance by interacting with polyamine catabolism, which shapes the plant metabolic profile under different growth conditions. Understanding the regulatory mechanisms involving crosstalk between AtADC and AtNATA genes in polyamine metabolism and the connection with certain SMBBs like Put can lead to more effective agricultural practices, improving plant growth, nitrogen uptake, and resilience under challenging conditions.
- MeSH
- Arabidopsis * genetics growth & development physiology metabolism MeSH
- Photosystem II Protein Complex metabolism MeSH
- Loss of Function Mutation MeSH
- Polyamines metabolism MeSH
- Arabidopsis Proteins * genetics metabolism MeSH
- Putrescine * metabolism MeSH
- Gene Expression Regulation, Plant * MeSH
- Salt Tolerance * genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Photosystem II Protein Complex MeSH
- Polyamines MeSH
- Arabidopsis Proteins * MeSH
- Putrescine * MeSH