Nejvíce citovaný článek - PubMed ID 36460930
BackgroundThe sensitivity and specificity of selected antigen detection rapid diagnostic tests (AG-RDTs) for SARS-CoV-2 were determined in the unvaccinated population when the Delta variant was circulating. Viral loads, dynamics, symptoms and tissue tropism differ between Omicron and Delta.AimWe aimed to compare AG-RDT sensitivity and specificity in selected subgroups during Omicron vs Delta circulation.MethodsWe retrospectively paired AG-RDT results with PCRs registered in Czechia's Information System for Infectious Diseases from 1 to 25 December 2021 (Delta, n = 20,121) and 20 January to 24 February 2022 (Omicron, n = 47,104).ResultsWhen confirmatory PCR was conducted on the same day as AG-RDT as a proxy for antigen testing close to peak viral load, the average sensitivity for Delta was 80.4% and for Omicron 81.4% (p < 0.05). Sensitivity in vaccinated individuals was lower for Omicron (OR = 0.94; 95% confidence interval (CI): 0.87-1.03), particularly in reinfections (OR = 0.83; 95% CI: 0.75-0.92). Saliva AG-RDT sensitivity was below average for both Delta (74.4%) and Omicron (78.4%). Tests on the European Union Category A list had higher sensitivity than tests in Category B. The highest sensitivity for Omicron (88.5%) was recorded for patients with loss of smell or taste, however, these symptoms were almost 10-fold less common than for Delta. The sensitivity of AG-RDTs performed on initially asymptomatic individuals done 1, 2 or 3 days before a positive PCR test was consistently lower for Omicron compared with Delta.ConclusionSensitivity for Omicron was lower in subgroups that may become more common if SARS-CoV-2 becomes an endemic virus.
- Klíčová slova
- SARS-CoV-2, delta, omicron, rapid antigen test, reinfection, vaccination,
- MeSH
- COVID-19 * diagnóza MeSH
- lidé MeSH
- reinfekce MeSH
- retrospektivní studie MeSH
- SARS-CoV-2 genetika MeSH
- testování na COVID-19 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
The COVID-19 pandemic highlighted some potential limitations of transmission-based precautions. The distinction between transmission through large droplets vs aerosols, which have been fundamental concepts guiding infection control measures, has been questioned, leading to considerable variation in expert recommendations on transmission-based precautions for COVID-19. Furthermore, the application of elements of contact precautions, such as the use of gloves and gowns, is based on low-quality and inconclusive evidence and may have unintended consequences, such as increased incidence of healthcare-associated infections and spread of multidrug-resistant organisms. These observations indicate a need for high-quality studies to address the knowledge gaps and a need to revisit the theoretical background regarding various modes of transmission and the definitions of terms related to transmission. Further, we should examine the implications these definitions have on the following components of transmission-based precautions: (i) respiratory protection, (ii) use of gloves and gowns for the prevention of respiratory virus infections, (iii) aerosol-generating procedures and (iv) universal masking in healthcare settings as a control measure especially during seasonal epidemics. Such a review would ensure that transmission-based precautions are consistent and rationally based on available evidence, which would facilitate decision-making, guidance development and training, as well as their application in practice.
- Klíčová slova
- COVID-19, infection prevention and control, transmission-based precautions,
- MeSH
- COVID-19 * prevence a kontrola MeSH
- kontrola infekce * metody MeSH
- lidé MeSH
- osobní ochranné prostředky * MeSH
- pandemie prevence a kontrola MeSH
- přenos infekce z pacienta na zdravotnického pracovníka prevence a kontrola MeSH
- respirační aerosoly a kapénky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The inability to predict the evolution of the COVID-19 epidemic hampered abilities to respond to the crisis effectively. The cycle threshold (Ct) from the standard SARS-CoV-2 quantitative reverse transcription-PCR (RT-qPCR) clinical assay is inversely proportional to the amount of SARS-CoV-2 RNA in the sample. We were interested to see if population Ct values could predict future increases in COVID-19 cases as well as subgroups that would be more likely to be affected. This information would have been extremely helpful early in the COVID-19 epidemic. We therefore conducted a retrospective analysis of demographic data and Ct values from 2,076,887 nasopharyngeal swab RT-qPCR tests that were performed at a single diagnostic laboratory in the Czech Republic from April 2020 to April 2022 and from 221,671 tests that were performed as a part of a mandatory school surveillance testing program from March 2021 to March 2022. We found that Ct values could be helpful predictive tools in the real-time management of viral epidemics. First, early measurement of Ct values would have indicated the low viral load in children, equivalent viral load in males and females, and higher viral load in older individuals. Second, rising or falling median Ct values and differences in Ct distribution indicated changes in the transmission in the population. Third, monitoring Ct values and positivity rates would have provided early evidence as to whether prevention measures are effective. Health system authorities should thus consider collecting weekly median Ct values of positively tested samples from major diagnostic laboratories for regional epidemic surveillance.
- MeSH
- COVID-19 * epidemiologie diagnóza MeSH
- dítě MeSH
- lidé MeSH
- retrospektivní studie MeSH
- RNA virová genetika analýza MeSH
- SARS-CoV-2 * genetika MeSH
- senioři MeSH
- virová nálož MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- RNA virová MeSH